Что такое аэрофотосъемка. Современная техника и методы аэрофотосъемки


Воздушное фотографирование (аэрофотосъемка), это фотографирование местности и отдельных объектов с летательных аппаратов (самолетов, беспилотных средств, искусственных спутников Земли) с помощью аэрофотоаппарата. В результате воздушного фотографирования получаются аэрофотоснимки, сокращенно аэроснимки.

Виды воздушного фотографирования определяются в зависимости от типа аэрофотоаппарата и положения его оптической оси во время фотографирования, от времени года и суток, способов выполнения и применяемых фотоматериалов. Основными видами фотографирования являются:

Плановое и перспективное. По положению оптической оси аэрофотоаппарата в момент фотографирования.
- Кадровое, щелевое, панорамное. По типу аэрофотоаппарата.
- Одиночное, маршрутное, площадное. По способам выполнения.
- Дневное, ночное. По времени суток.
- Черно-белое, цветное, спектрозональное.
- Летнее, зимнее, переходного периода. По времени года.

Виды аэроснимков определяются преимущественно по видам фотографирования. Например, в результате перспективного фотографирования получаются перспективные аэроснимки, в результате панорамного фотографирования - панорамные и т. п.

Плановое фотографирование.

Выполняется при таком положении аэрофотоаппарата, при котором его оптическая ось в момент экспонирования совпадает с отвесной линией или отклоняется от нее на угол, не превышающий установленного значения (3 градуса при аэрофотосъемке в целях и 25 градусов - в целях разведки). На плановых аэроснимках перспективность на глаз не воспринимается.

Масштаб планового аэроснимка равнинной и холмистой местности практически постоянный, а все измерения на нем могут производиться так же, как и на карте. Наиболее распространены плановые аэроснимки. Они позволяют определять форму, действительные размеры и местоположение объектов и широко используются для измерительных и картографических целей.

Перспективное фотографирование.

Производится при заданном наклонном положении оптической оси аэрофотоаппарата. Обычно для перспективного фотографирования фотоаппараты устанавливаются под углом 45, 60 или 75 градусов. Масштаб перспективного аэроснимка переменный: на переднем плане - крупный, постепенно уменьшается к заднему плану. Перспективные аэроснимки дают более наглядное представление о местности и объектах противника и применяются главным образом для изучения преград, гидротехнических сооружений, горных перевалов, маршрутов подхода к объектам противника, а также для разведки целей, сильно прикрытых средствами ПВО.

Перспективное фотографирование позволяет обнаруживать объекты, для маскировки которых использовались горизонтальные покрытия и кроны отдельно стоящих деревьев. Однако на перспективных аэроснимках хорошо читается только передний план, а задний план просматривается плохо.

Щелевое фотографирование.

В отличие от обычного (кадрового) производится специальным (щелевым) аэрофотоаппаратом, в котором экспонирование фотопленки ведется через узкую, постоянно открытую щель на пленку, перематывающуюся со скоростью полета самолета в масштабе фотографирования. Щелевой аэроснимок представляет собой сплошное (без разрывов) фотографическое изображение полосы местности в виде рулона на всю длину экспонируемой пленки.

Щелевое фотографирование выполняется, как правило, при таком положении щели, которое дает отклонение оптической оси от вертикали на 45 градусов в плоскости полета (вперед или назад). В результате получаются аксонометрические аэроснимки, на которых объекты просматриваются сверху и с одной из боковых сторон.

Измерительные свойства аксонометрических аэроснимков отличаются от плановых кадровых аэроснимков небольшим расхождением в продольном и поперечном масштабах (до 10-15%). Щелевое фотографирование может применяться при слабой освещенности местности (например, в сумерках).

Панорамное фотографирование.

Выполняется специальным (панорамным) аэрофотоаппаратом, у которого во время экспонирования пленки поворачивается объектив в плоскости, перпендикулярной к направлению полета. Панорамное фотографирование обеспечивает большой по ширине захват фотографируемой местности (от до горизонта). На панорамных аэроснимках в центральной части получается плановое изображение местности, а по сторонам - перспективное.

Одиночное фотографирование.

Применяется для разведки отдельных целей (как правило, ночью). Во всех других случаях применяется маршрутное (преимущественно) и площадное фотографирование с перекрытиями между снимками в маршруте (продольное) 20% и более и между маршрутами (поперечное) 30-40%. Двух-, трех- и четырехмаршрутное фотографирование может производиться и с одного маршрута полета, но специальным аэрофотоаппаратом, установленным в качающейся установке. При перспективном фотографировании продольное перекрытие считается по главной горизонтали. Оно должно быть примерно 50%.

Ночное фотографирование.

Выполняется при искусственном освещении местности с помощью пиротехнических средств (фотобомб, фоторакет, фотопатронов) или электрических самолетных осветительных установок (СОУ). Ночные аэроснимки, полученные при освещении фотобомбами, отличаются от дневных тем, что яркость фотоизображения на ночных снимках может быть неравномерной, а тени от возвышающихся предметов будут направлены в разные стороны. При освещении с помощью СОУ тени от возвышающихся предметов на плановых аэроснимках отсутствуют.

Спектрозональное фотографирование.

Производится на фотопленку, состоящую из нескольких слоев, одновременно в нескольких различных зонах спектра, в которых отражательные свойства объектов и окружающего их фона имеют заметные различия, благодаря чему между ними усиливается видимый контраст. По спектрозональным аэроснимкам можно разведать некоторые объекты, под цвет окружающего фона, выявить дополнительные характеристики проходимости и т. п.

Фотографирование радиолокационного изображения местности.

Осуществляется с экрана радиолокационной аппаратуры, установленной на самолете. Радиолокационное изображение местности получается в любое время суток и в любую погоду. С помощью оптической системы радиолокационное изображение проектируется на фотопленку, перемещающуюся со скоростью, пропорциональной скорости полета самолета. В результате на фотопленке получается непрерывное радиолокационное изображение полосы местности по направлению полета.

По материалам книги «Справочник по военной топографии».
А. М. Говорухин, А. М. Куприн, А. Н. Коваленко, М. В. Гамезо.

ТЕМЫ: 12.1 Аэрофотосъемка. 12.2 Космосъемка. 12.3 Навигационные системы.

Я ЛЕКЦИЯ

Под съемками местности в аэрокосмических методах исследо­вания принято понимать процесс дистанционной регистрации излу­чения с записью принимаемых сигналов в форме изображений (снимков), графиков и регистрограмм, а также в числовой форме. Основной, наиболее распространенной и удобной для практиче­ского использования формой записи результатов съемок является фотоизображение, в которое могут преобразовываться регистри­руемые сигналы практически во всех диапазонах электромагнит­ного спектра.

Аэрокосмические методы исследований бази­руются в основном на использовании фотографирующих съемочных, систем, к которым принято относить системы, дающие на выходе изображения местности, хотя на их входе может фиксироваться не только видимое излучение, но и излучение других диапазонов спектра - ультрафиолетовое, инфракрасное, микроволновое.

Фотографирующая система может быть фотографической, ра­ботающей по принципу прямого оптического проектирования види­мых лучей на светочувствительные фотослои, и нефотографической (оптико-электронной), в которой визуализация регистрируемого излучения осуществляется косвенно, путем электронно-оптических преобразований электрических сигналов.

Съемки земной поверхности, выполняемые с воздушных и кос­мических носителей аппаратуры, в свою очередь можно подразде­лить на фотографические и нефотографические. По принципу и ме­тоду регистрации излучения в группе нефотографических съемок различают телевизионную оптическую (кадровую) и оптико-меха­ническую (сканерную), фототелевизионную и радиолокационную съемки. Перспективными, но пока находящимися в стадии разра­ботки, также являются в этой группе лазерная, голографпческая и акустическая съемки.

Нередко в литературе можно встретить также классификацию нефотографических съемок, связанную с названиями отдельных диапазонов спектра. В ней выделяют обычно ультрафиолетовую, инфракрасную, радиотепловую и радиолокацион­ную съемки.

Следует отметить, что методы съемок могут быть пассивные и активные, а также многозональные и многоспектральные. В пас­сивных методах используются съемочные системы, которые сами не генерируют излучения, а регистрируют естественное излучение земной поверхности (солнечное видимое, инфракрасное, микро­волновое). В активных методах, например радиолокации, исполь­зуется съемочная аппаратура, генерирующая направленное излу­чение, воспринимающая отраженный от поверхности сигнал и преобразующая его в изображение.

Многозональный метод съемки, который может применяться в фотографическом и нефотографическом варианте, состоит в одно­временной регистрации излучения данного диапазона спектра (преимущественно -видимого, включая ближнюю ИК-зону) в не­скольких, обычно не более 6, узких его участках. Многоспектральный метод съемки, который применяется в нефотографическом варианте, заключается в одновременной индикации излучения многих диапазонов спектра также в узких их участках. В настоящее время многоспектральная съемка может вестись, охватывая одновременно ультрафиолето­вую, видимую, вею инфракрасную и даже частично микроволно­вую области спектра. С этой целью используется нефотографиче­ская аппаратура, содержащая до 13 и более съемочных каналов.



Элементы внешнего ориентирования воздушных и космических снимков определяются либо непосредственно при съемке с по­мощью специальных устройств и приборов (радиогеодезические станции, радиовысотомеры, статоскопы), либо косвенно, путем отыскания необходимых параметров на основе аналитического ре­шения так называемой обратной фотограмметрической задачи по данным геодезической или географической привязки снимков к местности. При космической фотосъемке задача определения эле­ментов внешнего ориентирования может быть решена также по данным измерения фотоснимков звездного неба. Эти снимки полу­чают с помощью специальной звездной камеры, определенным образом ориентированной относительно камеры, фотографирующей земную поверхность. Обе камеры работают синхронно, что обеспе­чивает одновременное получение снимков земной поверхности и звездного неба.

Аэрокосмические съемки принято делить на ряд классов и ви­дов в зависимости от назначения, используемых носителей, съе­мочной аппаратуры, технологии выполнения съемки, формы пред­ставления результатов.

Существуют несколько разновидностей съемок с самолета: аэро­фотографическая, тепловая инфракрасная, радиолокационная и др. Кроме того, традиционные аэрометоды включают ряд так на­зываемых геофизических съемок - аэромагнитную, аэрорадио­метрическую, аэроспектрометрическую, в результате выполнения которых получают не снимки, а цифровую информацию об ис­следуемых объектах.

Из всех съемок наиболее распространенной является аэрофо­тографическая съемка. В зависимости от направления оптической оси аэрофотоаппарата различают плановую и перспективную аэро­фотосъемку.

При плановой {вертикальной) аэрофотосъемке оптическую ось аэрофотоаппарата приводят в отвесное положение, при котором снимок горизонтален. Однако в процессе полета по прямолиней­ному маршруту аэросъемочный самолет периодически испытыва­ет отклонения, которые характеризуют углами тангажа, крена и сноса (рыскания). Из-за колебаний самолета аэрофотоаппарат также наклоняется и разворачивается. Принято к плановым относить снимки, имеющие угол наклона не более 3°.

При перспективной аэрофотосъемке оптическую ось аэрофото­аппарата устанавливают под определенным углом к вертикали. По сравнению с плановым перспективный снимок захватывает боль­шую площадь, а изображение получается в более привычном для человека ракурсе.

По характеру покрытия местности снимками аэрофотосъемку делят на одномаршрутную и многомаршрутную.

Одномаршрутная аэрофотосъемка применяется при исследо­ваниях речных долин, прибрежной полосы, при дорожных изыс­каниях и т. д. Выборочную маршрутную аэрофотосъемку характер­ных объектов географ может выполнять самостоятельно, сочетая ее с аэровизуальными наблюдениями. Для этих целей удобно ис­пользовать ручной аэрофотоаппарат или цифровую фотокамеру.

Наибольшее производственное применение, прежде всего для топографических съемок, получила многомаршрутная (площадная) аэрофотосъемка, при которой снимаемый участок сплошь покры­вается серией параллельных прямолинейных аэросъемочных мар­шрутов, прокладываемых обычно с запада на восток. В маршруте

на каждом следующем снимке получается часть местности, изоб­раженной на предыдущем снимке. Аэрофотоснимки, получаемые с продольным перекрытием, образуют стереоскопические пары. Про­дольное перекрытие, выражаемое в процентах, устанавливается в зависимости от назначения аэрофотосъемки различным - от 10 до 80 % при среднем значении 60 %. Аэрофотосъемочные маршру­ты прокладывают так, чтобы снимки соседних маршрутов имели поперечное перекрытие. Обычно поперечное перекрытие составля­ет 30 %. Перекрытие снимков позволяет объединить разрозненные аэроснимки в единый массив, целостно отображающий заснятую территорию.

Время для съемки выбирают так, чтобы снимки содержали максимум информации о местности. Учитывают наличие снеж­ного покрова, смену фенофаз развития растительности, состоя­ние сельскохозяйственных угодий, режим водных объектов, влаж­ность грунтов и т. д. Обычно аэрофотосъемку выполняют в лет­ние безоблачные дни, в околополуденное время, но в некоторых случаях, например для изучения почв, лесов, предпочтение отда­ют поздневесенним или раннеосенним съемкам. Съемка плоско­равнинной местности при низком положении Солнца в утрен­ние или вечерние часы позволяет получить наиболее выразитель­ные аэроснимки, на которых микрорельеф подчеркивается про­зрачными тенями. Однако освещенность земной поверхности дол­жна быть достаточной для аэрофотографических съемок с ко­роткими экспонирующими выдержками. Поэтому съемку при вы­соте Солнца менее 20° обычно не производят. По завершении летно-съемочных работ оценивается качество полученных мате­риалов: определяется фотографическое качество аэронегативов (величина коэффициента контрастности, максимальная плот­ность, плотность вуали), проверяется прямолинейность съемоч­ных маршрутов, контролируется продольное и поперечное пере­крытие и др.

Вида аэрофотосъемок. Понятие о съемочном процессе . Фотографирование местности с воздуха может вестись не только с самолетов, но и с других носителей съемочной аппарату­ры: вертолетов, воздушных шаров, аэростатов, дирижаблей, пла­неров и т. п. Основное требование к аэрофотосъемочному полету состоит в том, чтобы самолет летел строго по намеченному прямолинейному маршруту на одной заданной высоте и сохранял при этом макси­мально возможную устойчивость. В реальных условиях полета штурман-аэрофотосъемщик, учитывая угол сноса самолета под влиянием ветра, находит такой курс его следования, при котором обеспечивается полет с некоторой путевой скоростью в заданном направлении относительно земной поверхности.

За работой всего комплекса аэрофотосъемочной аппаратуры (аэрофотоаппарат, радиовысотомер, статоскоп, фоторегистрирующие приборы) следит непосредственно бортоператор. По данным о скорости и высоте полета он определяет и устанавливает на командном приборе такой интервал съемки, при котором выдержи­вается определенное перекрытие снимков в маршруте. В практике аэрофотосъемки принято по-разному называть и обозначать высоты фотографирования, измеряемые относительно различных уровней. Если высота фотографирования определяется от уровня моря, ее называют абсолютной. Высота фотографирования, измеряемая относи­тельно уровня аэродрома, называется относительной. Высоты фотографирования, кроме того, могут изме­ряться относительно среднего уровня территории съемки или отно­сительно конкретной точки на земной поверхности. В этом случае их называют соответственно средними и истинными высотами фотографирования. При расчете масштаба фотографирования, как правило, исходят из средней высоты фотографирования.

В зависимости от значений угловых элементов внешнего ориен­тирования камеры и характера покрытия местности снимками различают перспективную, плановую и стабилизированную аэро­фотосъемку, а также аэрофотосъемку одинарную, одномаршрутную и площадную (рис. 61).




Рис. 44 Схемы одинарной (а), одномаршрутной (б) и площадной (в)

аэрофотосъемки

Перспективную съемку выполняют при значительных углах на­клона оптической оси камеры от отвесной линии. При плановой аэрофотосъемке оптическую ось камеры стремятся уста­новить в отвесное положение, удерживая ее в фотоустановке в горизонтальном положении по уровню. При этом удается обеспе­чить вертикальность оптической оси камеры с погрешностью, не, превышающей обычно 3°. Стабилизированную аэрофотосъемку выполняют с помощью специальной гиростабилизирующей фотоустановки, которая обеспечивает получение снимков с углами наклона не более 40". В настоящее время в целях картографирова­ния выполняют, как правило, только плановую и стабилизирован­ную аэрофотосъемку.Под одинарной аэрофотосъемкой подразумевается,
фотографирование небольших участков местности, покрываемых
одиночными снимками. Одномаршрутная аэрофотосъемка приме­
няется обычно для фотографи­рования линейных объектов. Выполняя площадную аэрофотосъемку равнинных районов, обычно стремятся делать продольное и поперечное перекрытие соответственно в 60 и 30%. При таком продольном перекрытии у трех смежных аэроснимков маршрута будет образовываться зона тройного перекрытия, наличие которой необходимо для выполне­ния различных фотограмметрических измерений. Если на аэрофото­снимке площадной съемки провести средние линии перекрытий, то на нем будет очерчена некоторая центральная часть, называемая его рабочей или полезной площадью. В этой части снимка иска­жения за перспективу и рельеф всегда меньше, чем в периферий­ных его частях.

Для того чтобы обеспечить в процессе аэрофотосъемки задан­ную величину продольного перекрытия, командный прибор должен включать АФА через заданные интервалы времени.

Дешифрированием в аэрокосмическом методе называется про­цесс извлечения необходимой полезной информации об изучаемой территории из материалов аэрокосмической съемки. В результате дешифрирования специалист получает определенное количество исходных фактических сведений и данных, которые интерпретиру­ются в соответствии с конкретной тематикой исследования и ле­жат в основе создаваемой тематической карты.

Из всех видов регистрации информации, характеризующей изу­чаемую местность, предпочтение отдается наглядным видео­изображениям - воздушным снимкам и их монтажам, космиче­ским снимкам и наземным фототеодолитным фотографиям. Эти материалы являются основными для дешифрирования и изучения территориальных особенностей, но и другие виды представления зарегистрированной информации, например запись на магнитной ленте, не остаются без внимания в аэрокосмическом методе исследований. В процессе дешифрирования видео­изображений решается ряд задач, а именно: а) распознавание и классификация объектов местности или их комплексов, изобразив­шихся на снимках; б) установление взаимосвязей между отдель­ными объектами и характерных особенностей их пространствен­ного размещения и в) распознавание и фиксация динамических процессов и природных явлений, возникающих и протекающих на данной территории.

Из большого количества информации, содержащейся на воз­душных и космических снимках, в процессе дешифрирования, как правило, выбирается не вся, а только некоторая часть.

Дешифрирование фотографий непосредственно на местности - (полевое дешифрирование) представляет собой комплекс работ, осуществляемых в натуре путем прокладывания наземных марш­рутов. Распознавание и классификация участков и объектов мест­ности, являющихся предметом исследования, производится путем сличения фотографических изображений. Благодаря такому способу достигается высокая степень достовер­ности дешифрирования и максимальная полнота.

Помимо расшифровки фотографических изображений и их классификации в комплекс наземных работ при полевом дешиф­рировании входят следующие операции: а) нанесение на дешиф­рируемые снимки объектов, которые по ряду причин не нашли своего изображения, но имеют существенное значение для данного исследования и создаваемой, тематической карты; б) уточнение границ различных участков, неясно выразившихся на снимках; в) вычерчивание на фотоснимках объектов и участков, исчезнув­ших на местности, и нанесение на них появившихся вновь; г) сбор дополнительных сведений и характеристик соответственно тема­тике исследований и д) установление и сбор географических наи­менований.

Таким образом, в комплекс «полевое дешифрирование» поми­мо собственно дешифрирования включаются съемочные операции, а также исследования и измерения, соответствующие теме состав­ляемой карты и задачам географического исследования. При по­левом дешифрировании снимки выполняют двойную функцию: во-первых, снабжают специалиста рядом необходимых фактиче­ских данных, содержащихся на них, и, во-вторых, являются осно­вой, на которую наносятся те объекты местности, которые состав­ляют предмет исследования и нагрузку составляемой карты.

Одно из преимуществ полевого дешифрирования состоит в том, что при его производстве местность изучается на момент дешиф­рирования, а не на момент фотографирования. В самом деле, летно-съемочные работы и полевое дешифрирование нередко бывают разделены некоторым промежутком времени, за который на местности могли произойти более или менее существенные изме­нения. Полевое дешифрирование позволяет уточнить устарев­шие аэрофотоснимки. Важным преимуществом полевого дешиф­рирования является то, что в процессе полевых работ на аэро­фотоснимок можно нанести объекты, которые на нем не изобра­зились или из-за недостаточного разрешения фотослоя, или из-за того, что они закрыты другими объектами (например, детали местности под пологом леса), или из-за малого интервала ярко­стей объектов и фона, на котором они размещены. Немаловажное преимущество полевого дешифрирования состоит в возможности в процессе полевых работ безошибочно установить географические наименования речек, ручьев, урочищ, населенных пунктов и т. д.

Наряду с этими достоинствами полевого дешифрирования от­метим ряд недостатков. Одним из них является большая затрата средств на организацию и выполнение полевых работ. Кроме того, само производство полевого дешифрирования сопряжено со зна­чительными затратами труда и сил дешифровщика..

Перед выходом на местность для производства полевого де­шифрирования необходимо провести некоторые предварительные, работы, которые заключаются в следующем: а) географическое изучение района исследований и составление ряда документов, способствующих полевому дешифрированию; б) предварительное камеральное дешифрирование тех изображений, которые не вызы­вают никаких сомнений в их значении, например дорог, пашен", ручьев, границ леса и пр.; в) отбор, оценка и подготовка для де­шифрирования материалов аэрофотосъемки.

В подготовительный период создается предварительная схема-проект наземных маршрутов. Эта схема составляется на восковке или пластике, которые накладываются на накидной монтаж, смон­тированный из контактных отпечатков, отобранных через номер. На схеме тушью или фломастером вычерчиваются проектируемые наземные маршруты, по ходу которых должно производиться по­левое дешифрирование. Выбор маршрутов производится с учетом тематики создаваемой карты. Например, маршруты геоморфоло­гического дешифрирования будут отличаться от маршрутов геобо­танического, топографического и других видов дешифрирования.

При составлении схемы-проекта наземных маршрутов следует соблюдать следующие правила.

Маршруты должны быть проложены с таким расчетом, что­бы исследователь мог посетить участки и объекты, составляющие предмет исследования. Например, при геологическом или геомор­фологическом дешифрировании маршруты должны быть проложе­ны ко всем обнажениям, поперек речных долин, проходить через участки, изображения которых отличаются друг от друга рисунком или фототоном. Полевое дешифрирование произво­дится одновременно с рисовкой горизонталей и дополнительной съемкой объектов местности, не изобразившихся на фотографии, и тех, которые составляют содержание данной тематической карты.

Фотосхемы и увеличенные космические снимки целесообразно использовать для полевого дешифрирования тогда, когда обследу­ется большая по площади территория и создается мелкомасштаб­ная карта (1:100000 и мельче). | Обычно в этом случае полевое дешифрирование проводится с автомашины или вертолета.

Аэровизуальное дешифрирование состоит в том, что _производится оно с борта самолета или вертолета. Для этой работы используются тихоходные летательные аппараты, имеющие скорость полета не более 150 км/ч, так как при большей скорости дешифровщик не успевает различить и зарегистрировать объекты дешифрирования, быстро исчезающие из его поля зрения. Оптимальные высоты, с которых производится аэровизуальное дешифрирование, зависят от скорости полета, задач, исследования и желаемой де­тальности дешифрирования. Опыт показал, что аэровизуальное дешифрирование целесообразно производить с высот до 200 м.

Технологическая схема аэровизуального дешифрирования со­стоит из нескольких этапов. На первом этапе на материалах аэро-дешифрирования кодовыми обозначениями, которые следует раз­работать заранее, так как стандартов для них нет. Сплошное полевое дешифрирование в настоящее время все чаще заменяется так называемым комбинированным, которое пред­ставляет собой сочетание полевого и камерального. Такая технологическая схема дешифрирования отличается своими экономиче­скими выгодами без ухудшения качества. Существует несколько вариантов комбинированного дешифрирования. Наиболее простым, но и менее экономным является такой процесс комбинированного дешифрирования, при котором все аэрофотоснимки перед выездом на местность подвергаются предварительному камеральному де­шифрированию с использованием прямых и косвенных признаков.

Камеральное дешифрирование материалов аэрокосмической съемки отличается от полевого тем, что процесс извлечения ин­формации и изучение сфотографированной территории осуществля­лся в лабораторных условиях. В настоящее время камеральное дешифрирование интенсивно развивается. По сравнению с полевым имеет ряд преимуществ: экономическая выгодность, экономия времени и трудовых затрат, комфортные условия труда, возможность кооперирования различных специалистов, применение разнообразной аппаратуры, облегчающей труд человека, изучение труднодоступных или вовсе недоступных регионов. В процессе камерального дешифрирования ряд его этапов может быть автоматизирован. К недостаткам камерального - дешифрирования можно отнести то, что во многом оно имеет вероятностный характер, что сказывается на достоверности дешифрирования и требует полевой доработки.

Визуальное дешифрирование всегда целесообразно произво­
дить на стереомодели




визуальное дешифрирование производится не толькона воздушных снимках, но также и на космических, для чего сле­дует скомбинировать стереопары из снимков, полученных на соседних витках полета космического корабля.

Из стереоскопических приборов общеупотребительны следующие: а) зеркальные и призменные стереоскопы; б) зеркальные стереоскопы с переменным увеличением; в) стереопантометры с| параллаксометром; г) интерпретоскопы.

Из семейства зеркально-линзовых стереоскопов наиболее удоб­ны для визуального дешифрирования стереоскопы со сменным увеличением, которые изготавливает народное предприятие «Карл-Цейсе» в ГДР. Этот прибор допускает общий обзор всей площади стереопары (или ее большей части). Для детального дешифриро­вания на прибор надевается насадка с двумя окулярами, имеющи­ми увеличение 4 х. Поле зрения при этом уменьшается, но отдель­ные участки стереомодели рассматриваются с увеличением, что способствует дешифрированию мелких деталей изображения. В комплект к стереоскопу придается параллаксометр, с помощью которого можно измерять линейные продольные параллаксы с точностью не более 0,05 мм и, следовательно, производить обмер стереомодели и определять собственные высоты ряда объектов местности.

Наиболее универсальный стереоскопический прибор для дешиф­рирования - интерпретоскоп - изготавливается в ГДР (рис. 62). Это прибор стационарного типа и предназначен для визуального дешифрирования воздушных и космических снимков, имеющих размеры от 70X70 до 230X230 мм, изготовленных как на прозрачной основе, так и на непрозрачной. Одно из достоинств прибора состоит в том, что на нем можно обрабатывать нераз­резанную на отдельные кадры пленку. Дешифрируемые снимки помещаются на стеклянную столешницу стола, где могут просве­чиваться источниками света, расположенными в корпусе стола. Снимки на непрозрачной основе освещаются светильниками такСплошное полевое дешифрирование в настоящее время все чаще заменяется так называемым комбинированным, которое пред­ставляет собой сочетание полевого и камерального. Такая технологическая схема дешифрирования отличается своими экономиче­скими выгодами без ухудшения качества. Существует несколько вариантов комбинированного дешифрирования. Наиболее простым, но и менее экономным является такой процесс комбинированного дешифрирования, при котором все аэрофотоснимки перед выездом на местность подвергаются предварительному камеральному де­шифрированию с использованием прямых и косвенных признаков.

Камеральное дешифрирование материалов аэрокосмической:ъемки отличается от полевого тем, что процесс извлечения ин­формации и изучение сфотографированной территории осуществля­лся в лабораторных условиях. В настоящее время камеральное дешифрирование интенсивно развивается. По сравнению с полевым имеет ряд преимуществ: экономическая выгодность, экономия времени и трудовых затрат, комфортные условия труда, возможность кооперирования различных специалистов, применение разнообразной аппаратуры, облегчающей труд человека, изучение труднодоступных или вовсе недоступных регионов. В процессе камерального дешифрирования ряд его этапов может быть автоматизирован. К недостаткам камерального дешифрирования можно отнести то, что во многом оно имеет вероятностный характер, что сказывается на достоверности дешифрирования и требует полевой доработки.

Визуальное дешифрирование всегда целесообразно произво­
дить на стереомодели по двум причинам. Во-первых, прямой приз­
нак дешифрирования (форма объекта) на стереомодели рассмат­
ривается в трехмерном, а не в двухмерном пространстве, как это
имеет место на плоских одиночных снимках или их монтажах.
Поэтому возможность распознавания и классификации объектов,
имеющих высоту, значительно возрастает. Во-вторых, на стереомо­
дели наглядно представлены характерные особенности простран­
ственного размещения отдельных компонентов ландшафта, зако­
номерно приуроченных к различным формам рельефа, что лежит
в основе косвенных способов дешифрирования. Стереоскопическое
визуальное дешифрирование производится не только на воздушных снимках, но также и на космических, для чего сле­дует скомбинировать стереопары из снимков, полученных на соседних витках полета космического корабля.

История

Первая аэрофотосъёмка состоялась в г. над Парижем . Её осуществил её французский фотограф и воздухоплаватель Гаспар-Феликс Турнашон , более известный под псевдонимом Надар . .

В 1887 году французский фотограф разработал и выполнил фотосъёмку с помощью воздушного змея .

Голубь с камерой для аэрофотосъёмки

Среди различных способов ведения аэрофотосъёмки есть и довольно экзотические. Так в начале XX века немецкий аптекарь Юлиус Нойброннер запатентовал свой «Способ и средства для фотографирования пейзажей сверху » с помощью почтовых голубей . Этот способ пользовался успехом и завоевал награды на международных выставках в Дрездене , Франкфурте и Париже в 1909-1911 годах Голубиная фотосъёмка использовалась в время Первой мировой войны для ведения воздушной разведки и послужила прообразом современных «живых камер» устанавливаемых на диких и домашних животных.

В Первую мировую войну аэрофотосъёмка для военных целей практиковалась многими лётчиками; в числе этих пилотов был легендарный американец Фред Зинн. Одним из первых известных сражений, во время которых проводилась аэрофотосъёмка, была битва при Нев-Шапель ( г.).

Применение аэрофотосъёмки для картографирования впервые произошло тоже на фронтах Первой мировой войны. В январе г. по приказу генерала Алленби пять австралийских лётчиков эскадрильи № 1 Королевских военно-воздушных сил Австралии сфотографировали местность площадью 1 620 км 2 в Палестине с целью корректировки и улучшения карт турецкого фронта. Лейтенанты Леонард Тэплин, Аллан Браун, Х. Л. Фрэзер, Эдвард Патрик Кенни и Л. В. Роджерс сняли территорию, которая простиралась от линии турецкого фронта на 51 км вглубь тыловых районов. Начиная с 5 января, они летали на истребителях сопровождения «Ройал Эйркрафт Фэктори B.E.2» и «Мартинсайд» (Martinsyde ) с целью отражения атак боевой авиации противника. Пилотам приходилось не только отбивать удары вражеской авиации, но ещё и преодолевать порывы ветра 29 м/с, огонь противовоздушной аритиллерии противника, а также справляться с плохо работающим оборудованием. Поставленная задача была выполнена предположительно 19 января г.

Одним из наиболее успешных инициаторов коммерческого использования аэрофотосъёмки был Шерман Фэйрчайлд, который основал собственную компанию «Фэйрчайлд Эйркрафт» по проектированию и производству самолётов, предназначенных для полётов в условиях высокогорной местности. В 1935 году на борту самолёта аэротопографической службы компании «Фэйрчайлд Эйркрафт» был установлен блок с двумя камерами, работающими синхронно. Каждая камера, снабжённая пятью шестидюймовыми, а также десятидюймовыми линзами, делала снимки с высоты 23 000 футов (7 010,4 ). Один снимок охватывал территорию в 580 км 2 . Один из первых государственных заказов компании предусматривал аэротопографическую съёмку штата Нью-Мексико для изучения почвенной эрозии . Через год Фэйрчайлд применил более совершенную камеру для аэрофотосъёмки высокогорных местностей - она имела девять линз в одном блоке и могла снимать с высоты 30 000 футов (9 144 м ), причём, каждый снимок отображал территорию 1 600 км 2 .

В наши дни, в связи с повсеместным распространением недорогих цифровых фотоаппаратов, многие люди тайно делают снимки, находясь на борту коммерческих самолётов и - всё чаще - самолетов гражданской авиации общего назначения , совершающих частные прогулочные полёты.

Способы аэрофотосъёмки

При съёмке заданной местности плоскость аэрофотоаппарата может занимать горизонтальное или наклонное положение. При этом аэрофотосъёмка называется плановой или перспективной соответственно. Также возможно фотографирование на цилиндрическую поверхность или вращающимся объективом. Такая съемка носит название панорамной.

В основном, аэрофотосъемка выполняется фотоаппаратом с одним объективом, но если требуется увеличить площадь снимка, используются многообъективные аэрофотоаппараты.

Могут выполняться одиночные аэроснимки, кроме того, может производиться фотографирование по определённому направлению или по площади. При этом аэросъёмка носит название маршрутной или площадной, соответственно.

Ведение аэрофотосъёмки

Для корректного прокладывания маршрута при аэрофотосъемке часть участка местности, сфотографированного на одном снимке, обязательно должна быть отображена и на другом. Эту особенность аэрофотоснимков называют продольным перекрытием. Продольное перекрытие - это отношение площади, сфотографированной на двух соседних снимках, к площади, изображённой на каждом отдельном снимке, выраженное в процентах. Обычно значение продольного перекрытия на аэрофотоснимках составляет 60 %, хотя в особенных случаях данные значения могут быть изменены в соответствии с требованиями к этим снимкам.

Если требуется провести аэрофотосъёмку обширного по ширине участка, то фотографирование заданной площади производят серией параллельных маршрутов, имеющих поперечное перекрытие. При такой фотосъёмке стандартное значение перекрытия обычно составляет 30 %.

Для проведения аэрофотосъёмки задаются высота полёта относительно фотографируемой местности, фокусное расстояние камеры аэрофотоаппарата, сезон, время и порядок прокладывания маршрутов.

Из-за подвижности основания при аэрофотосъемке в каждый момент фотографирования центр проектирования объектива и плоскость аэроснимка занимают произвольное положение. Величины, определяющие пространственное положение снимка относительно принятой системы координат, называются элементами внешнего ориентирования снимка. Это три линейные координаты центра проектирования x s , y s , z s и три угла, определяющие поворот снимка вокруг трёх осей координат.

В связи с развитием технологий спутникового позиционирования в последнее время при производстве аэрофотосъёмки (с целью облегчения обработки результатов) большой популярностью пользуются системы GPS и ГЛОНАСС .

Определение координат сфотографированных точек

Для определения пространственных координат сфотографированных точек по аэрофотоснимкам сначала находят элементы внешнего ориентирования снимков. Этими точками могут стать некоторые достоверно определённые координаты геодезических или иных объектов, которые отчетливо видны на снимках. Для установления в полёте элементов внешнего ориентирования аэрофотосъёмки применяют следующие устройства:

В сумме все данные позволяют вычислить координаты центра проектирования. Показания гировертикали дают возможность найти углы наклона снимка. Эти же углы можно определить обработкой снимков, на которых запечатлены звёздное небо, положение Солнца или линия горизонта.

Фотопленки и объективы, применяемые в аэрофотосъемке

Для увеличения качества и точности полученных аэроснимков в настоящее время применяются аэрофотообъективы с высокой разрешающей способностью и малой дисторсией . Также широкое применение нашла аэроплёнка с очень малой деформацией. Падение освещённости по полю зрения должно быть наименьшим, а затвор должен обеспечить очень короткие (до 1/1000 с) выдержки, чтобы уменьшить нерезкость. Сама же аэроплёнка в момент фотографирования должна быть строго выровнена в плоскости.

На сегодняшний день аэрофотографирование производят на следующие типы плёнок:

Кроме этого в настоящее время приобретает популярность съемка на цифровые фотоаппараты, что позволяет достичь оперативности в работе.

Обработка полученных изображений

В настоящее время обработку полученных изображений ведут с помощью специальных компьютерных комплексов - Цифровых фотограмметрических станций (ЦФС) - например, Intergraph ImageStation или PHOTOMOD. При этом дополнительно выполняются коррекции перспективы, дисторсии и иных оптических искажений, цветовая и тоновая коррекция полученных снимков, сшивка смонтированного фотоплана в единое изображение, каталогизация изображений, совмещение их с уже существующими картографическими материалами, включение в Географические информационные системы (ГИС) и пр.

См. также

Техника и аппаратура для аэрофотосъёмки

  • Ан-30 - самолёт воздушного наблюдения и аэрофотосъёмки.
  • Сверхлёгкая авиация - парапланы , парамоторы , автожиры, мотодельтапланы.
  • Уран - светосильные высококачественные объективы для аэрофотокамер.
  • Ортогон - специальные прецезионные ортоскопические объективы для аэрофотокамер.

Примечания

  1. History of Aerial Photography Professional Aerial Photographers Association (retrieved December 21, 2007)
  2. History of Aerial Photography . // papainternational.org. Архивировано из первоисточника 4 июня 2012. Проверено 9 апреля 2012.
  3. Brons, Franziska (2006b), "«Bilder im Fluge: Julius Neubronners Brieftaubenfotografie»", Fotogeschichte Т. 26 (100): 17–36 .
  4. Dr Julius Neubronner’s Miniature Pigeon Camera . // publicdomainreview.org. Архивировано из первоисточника 4 июня 2012. Проверено 6 апреля 2012.
  5. Neubronner, Julius (1920), «55 Jahre Liebhaberphotograph: Erinnerungen mitgeteilt bei Gelegenheit des fünfzehnjährigen Bestehens der Fabrik für Trockenklebematerial» , Frankfurt am Main: Gebrüder Knauer, сс. 23–31, OCLC
  6. Большая Советская Энциклопедия , статья «Аэрофотоаппарат» (eng. aerial camera ).
  7. Биография лейтенанта Леонарда Тэплина (англ.) Retrieved 24 February 2011.
  8. The Complete Encyclopedia of World Aircraft pg. 382 ISBN 0-7607-0592-5 printed 1997
  9. «Wide Area Is Mapped From Air By Giant Ten Lens Camera» Popular Mechanics , October 1935 editors have stated Fairchild Aircraft in hand written comment to left of archived article

На вопрос о том, что такое аэрофотосъемка ВикипедиЯ отвечает следующим образом:
Аэрофотосъёмка - фотографирование территории с высоты от сотен метров до десятков километров при помощи аэрофотоаппарата, установленного на атмосферном летательном аппарате (самолёте, вертолёте, дирижабле и пр. или их беспилотном аналоге).

Про , а также о появлении первых Вы можете А пока же остановимся на том, как в современном мире происходят процессы аэрофотосъемки, какие используются летательные аппараты для съемки фото с высоты, какая съемочная техника применяется.

Упомянем лишь вкратце, что первые аэрофотоснимки появились еще в XIX веке. В качестве летательных аппаратов тогда использовались воздушные шары и воздушные змеи. Причем воздушные шары для аэрофотосъемки применялись как на привязи с земли, так и свободнолетающие с «воздухоплавателем-опрератором» на борту. И лишь позднее стали применяться самолеты для осуществления аэрофотосъемки.

Аэрофотосъемка при помощи самолетов.

Долгое время аэрофотосъемка при помощи самолетов была самым распространенным способом получения фотографий с воздуха. Первые удачнее опыты были проведены еще в на рубеже XIX и XX веков. Наибольшее применение аэрофотосъемка имела тогда в области картографии — аэротопографическая съёмка.
Фотосъемка с самолетов и по сей день имеет большое значение, но ее роль становится все меньше и меньше. На данный момент актуальность аэрофотосъемки с самолетов остается в тех областях, где необходимо получить охват большой площади за минимальное время. Да и в этих задачах все чаще и чаще применяются снимки из космоса. Менее масштабные задачи решаются при помощи вертолетов, парапланов и, все чаще, с беспилотных летательных аппаратов – мультикоптеров и самолетов.

Вертолеты в качестве аппаратов для проведения аэрофотосъемки.

И по сей день является актуальным видом аэрофотосъемки, поскольку вертолет может зависнуть в определенной точке и позволяет получить охват приличной территории за один вылет. В отличии от самолетов, которые чаще используются для получения информационно-технической аэрофотосъемки, вертолеты часто применяются и для художественной и рекламной съемки с воздуха. С вертолетов делают съемку клипов и эпизодов фильмов, снимают рекламные ролики.

Аэрофотосъемка с параплана.

Если сравнивать с вышеприведенными способами аэрофотосъемки, то мотопараплан является наименее затратным способом, зачастую не требующим разрешения на полет, а также способном проводить съемку на малых высотах. К минусам можно отнести то, что параплан не способен зависнуть для проведения, к примеру, продолжительной аэрофотосъемки из одной точки, поэтому сшивка качественных сферических панорам является затруднительной с такого рода аппаратов. Еще одним минусом можно назвать невозможность полетов в городской черте, а также в стесненных условиях — между деревьями, под арками и т.д.

Аэрофотосъемка с беспилотных самолетов.

Является, пожалуй, наиболее простым и менее затратным способом получения малоплощадной техническо-информационной съемки. Подходит для мониторинга территорий с воздуха, аэрофотосъемки с целью получения ортофотопланов местности и тому подобных задач. Из минусов можно обозначить тот момент, что беспилотные самолеты не пригодны для художественной и рекламной съемки, а такее не способны зависать в точке, требуют определенной пложадки для взлета и посадки.

Аэрофотосъемка с мультикоптера.

Наиболее перспективный на данный момент способ получения аэросъемки когда не требуется отснять большие площадные массивы (где самолеты и космические снимки пока вне конкуренции).

Выгодным отличием данного вида аэрофотосъемки является то, что это наименее затратный способ получения аэрофотоматериалов. Стоимость таких услуг все сильнее и сильнее снижается, а возможности аэрофотосъемки с мультикоптеров постоянно увеличиваются. Если раньше для аэрофотосъемки нужно было поднять настоящий самолет или вертолет в воздух (а соответственно согласовать разрешения на полеты, оплатить дорогостоящее топливо и работу пилотов и многое другое), что обходилось в весьма круглую сумму, а также имело массу ограничений по возможностям, то теперь все оборудование для аэрофотосъемки можно привезти в багажнике любого автомобиля! Для подготовки к полетам из транспортировочного состояния требуется не более 10-20 минут, а съемочная команда состоит всего из двух человек — пилота и оператора. В зависимости от объемов и задач аэрофотосъемки стоимость может начинаться от 5 тысяч рублей.

Современные мультикоптеры (квадрокоптеры, гексакоптеры, октокоптеры) обладают весьма сложными современными системами стабилизации, позволяющими удерживать летающий аппарат в точке с погрешностью 0,5 метра по высоте и 1 метр по горизонтали, они способны на автономные полеты по заранее заданным координатам, могут выполнять автоматический возврат на точку старта и автопосадку по команде, либо же в случае потери сигнала управления или же в других нештатных ситуациях. Для взлета и проведения аэрофотосъемки с мультикоптера не обязательно иметь большую взлетно-посадочную площадку, при необходимости взлет и посадку можно производить даже с рук. Также, в отличии от любой другой техники для съемки с воздуха, мультикоптер способен летать даже в закрытых помещениях. А способность зависать в точке позволяет делать множество кадров из этой точки, которые впоследствии можно сшить в

Виды аэрофотосъемки отличаются один от другого по ряду признаков. Фотографирование земной поверхности с самолета может происходить при различных положениях главной оптической оси камеры аэрофотоаппарата. В зависимости от пространственного ее положения, различают следующие виды аэрофотосъемки: горизонтальную, плановую и наклонную (перспективную). Под горизонтальной подразумевается такая аэрофотосъемка, при которой главная оптическая ось аэрофотоаппарата занимает отвесное положение (б=0), плоскость негатива - строго горизонтальна. Если в момент фотографирования главная оптическая ось камеры аэрофотоаппарата отклоняется от отвесной линии в среднем на 1,0-1,5°, но не более 3,0-5,0°, то такая аэрофотосъемка называется плановой. Фотографирование же с самолета при наклонном положении главной оптической оси аэрофотоаппарата от отвесной линии на углы более 10° называется наклонной, или перспективной аэрофотосъемкой. В том случае, когда на аэрофотосъемке изображается естественный горизонт, аэрофотосъемка будет перспективной с горизонтом. Кроме того, может быть еще планово-перспективная аэрофотосъемка, сущность которой заключается в том, что при полете по одному и тому же маршруту с помощью специальных аэрофотоаппаратов одновременно производятся плановые и перспективные аэрофотоснимки. В зависимости от характера покрытия местности аэрофотоснимками аэрофотосъемка разделяется на ординарную, маршрутную и сплошную. Ординарная аэрофотосъемка представляет собой фотографирование отдельных объектов местности (например, гари, ветровала, склада древесины, участка леса, сплава и др.) одиночными или парными снимками, связанными между собой перекрытиями. Маршрутной аэрофотосъемкой называется воздушное фотографирование с самолета полосы местности по определенному маршруту. В зависимости от объекта, подлежащего аэрофотосъемке, маршруты полетов могут быть прямолинейными (ряд кварталов леса) или криволинейными (вдоль русла реки). При такой аэрофотосъемке между снимками в маршруте осуществляется перекрытие, достигающее 56-60%; оно называется продольным перекрытием. Маршрутная аэрофотосъемка применяется для лесотранспортных, водно-мелиоративных и других работ, проводимых в пределах узкой полосы местности. Производится она путем проложения ряда прямолинейных и параллельных между собой маршрутов, взаимно перекрывающихся. При данном виде аэрофотосъемки, помимо продольных перекрытий между снимками в маршрутах, должно быть соблюдено и заданное перекрытие между снимками соседних маршрутов полета, называемое поперечным перекрытием; обычно оно не превышает 30-40%. По методу последующей фотограмметрической обработки аэроснимков и изготовления конечной продукции различают три вида аэрофотосъемки:

  • 1. Контурную аэрофотосъемку, в результате которой получается только контурный план местности.
  • 2. Комбинированную аэрофотосъемку, при которой топографический план местности создается путем использование материалов аэрофотосъемки, а рельеф изображается на нем горизонталями и условными знаками в результате полевых наземных топографо- геодезических работ, преимущественно с применением мензульной съемки при совместном использовании аэроснимков.
  • 3. Стереофотограмметрическую (высотную) аэрофотосъемку, которая дает возможность получить полный топографический план местности с горизонталями на основании камеральной обработки аэроснимков при небольшом количестве геодезических точек.

Летно-съемочный процесс для всех этих видов аэрофотосъемки в основном один и тот же, но стереофотограмметрическая съемка предъявляет специальные требования к оптике, юстировке аппарата и фиксированию элементов внешнего ориентирования. Аэрофотосъемки можно различать, исходя из масштаба фотографирования. Плановая аэрофотосъемка, в зависимости от получаемого масштаба аэроснимков, разделяются на:

  • а) крупномасштабную - при масштабе фотографирования крупнее 1:10000; аэрофотосъемка летно-съемочный процесс маршрут
  • б) среднемасштабную - при масштабе фотографирования мельче 1:10000 до 1:30000;
  • в) мелкомасштабную - при масштабе фотографирования мельче 1:30000; 1:50000; 1:75000 и предельно до 1:100000.

Фотограмметрическая обработка плановых аэрофотоснимков весьма проста. В условиях равнинной местности она будет заключаться, прежде всего, в устранении искажений от несоблюдения вертикального положения оптической оси фотокамеры и от колебаний высоты полета. Для приведения в известность лесов и обследования их на обширных территориях вполне можно ограничиться использованием упрошенных фотосхем, составленных из приведенных к одному масштабу аэрофотоснимков. Возможность использования плановых аэрофотоснимков для таксации леса без предварительной и сложной фотограмметрической обработки (развертывания, трансформирования) является большим достоинством и позволяет сразу же после аэрофотосъемки применить их для полевых работ. В тех же случаях, когда для решения различных лесохозяйственных, и в особенности лесоинженерных задач, требуется составление более точных планов, создаются фотопланы с соблюдением потребной степени точности (при наличии геодезической основы) путем применения метода фототриангуляции и производства трансформирования аэроснимков. Благодаря сравнительно небольшой величине искажений в изображениях леса на плановых аэрофотоснимках пользование ими не вызывает особых затруднений. При продольном перекрытии в 56-60% создается полная возможность стереоскопического их просмотра, оконтуривания участков, дешифрирования различных категорий площадей и земель и составления их описания.

Основным недостатком плановой аэрофотосъемки считается небольшая производительность ее по сравнению с перспективной и планово-перспективной съемки. Но при современном состоянии техники этот недостаток устраняется в связи с применением широкоугольных объектов, увеличением формата аэрофотоснимков и высоты фотографирования. Аэрофотоснимки наклонной аэрофотосъемки с перспективным изображением снятой местности имеют неизбежно резкопеременный масштаб, уменьшающий от переднего плана к дальнему. При этом значительное уменьшение масштаба на дальнем плане вызывает резкое падение распознаваемости заснимаемых объектов и таксационных показателей насаждений. При перспективной аэрофотосъемке в горной местности, в случае наличия резко выраженного рельефа, на аэрофотоснимках получаются значительные искажения ситуации, появляются «мертвые» пространства, вследствие чего на них не фиксируется ряд важных деталей местности. Стереоскопическое рассмотрение таких аэрофотоснимков возможно. Оно лучше на переднем плане и при небольшой перспективе изображения местности. К числу недостатков перспективной аэрофотосъемки относится большая сложность их фотограмметрической обработки. Сущность щелевой аэрофотосъемки заключается в непрерывном фотографировании полосы местности на движущуюся пленку сквозь узкую щель в фокальной плоскости камеры, расположенную перпендикулярно к направлению полета. При целевой аэрофотосъемке происходит непрерывное экспонирование пленки, поэтому контактный отпечаток имеет на рулонной бумаге вид сплошной ленты. Движение пленки синхронизировано с движением изображения, что и обусловливает резкость снимка. Чаще всего щелевые аппараты делаются двухобъективными; один из них - широкоугольный - дает мелкомасштабное изображение, другой - крупномасштабное. С помощью этих аппаратов можно производить фотографирование с низких высот полета в облачные дни и в условиях сумерек, получать плановые аэроснимки одновременно в различных масштабах, выполнять стереоскопическую съемку под любым заданным углом.