Что такое аксиома параллельных. Признаки и свойства параллельных прямых

§ 1 Аксиома параллельных прямых

Выясним, какие утверждения называются аксиомами, приведем примеры аксиом, сформулируем аксиому параллельных прямых и рассмотрим некоторые её следствия.

При изучении геометрических фигур и их свойств возникает необходимость в доказательстве различных утверждений - теорем. При их доказательстве часто опираются на ранее доказанные теоремы. Возникает вопрос: а на чем основаны доказательства самых первых теорем? В геометрии приняты некоторые исходные положения, на их основе и доказываются далее теоремы. Такие исходные положения называются аксиомами. Аксиома принимается без доказательств. Слово аксиома происходит от греческого слова «аксиос», что означает «ценный, достойный».

С некоторыми аксиомами мы уже знакомы. Например, аксиомой является утверждение: через любые две точки проходит прямая, и притом только одна.

При сравнении двух отрезков и двух углов мы накладывали один отрезок на другой, а угол накладывали на другой угол. Возможность такого наложения вытекает из следующих аксиом:

·на любом луче от его начала можно отложить отрезок, равный данному, и притом только один;

·от любого луча в заданную сторону можно отложить угол, равный данному неразвернутому углу, и притом только один.

Геометрия - древняя наука. Почти два тысячелетия геометрия изучалась по знаменитому сочинению «Начала» древнегреческого ученого Евклида. Евклид сначала формулировал исходные положения - постулаты, а затем на их основе путем логических рассуждений доказывал другие утверждения. Геометрия, изложенная в «Началах», называется евклидовой геометрией. В рукописях ученого есть утверждение, называемое пятым постулатом, вокруг которого очень долгое время разгорались споры. Многие математики предпринимали попытки доказать пятый постулат Евклида, т.е. вывести его из других аксиом, но каждый раз доказательства были неполными или заходили в тупик. Лишь в XIX веке было окончательно выяснено, что пятый постулат не может быть доказан на основе остальных аксиом Евклида, и сам является аксиомой. Огромную роль в решении этого вопроса сыграл русский математик Николай Иванович Лобачевский (1792-1856). Итак, пятый постулат - аксиома параллельных прямых.

Аксиома: через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

§ 2 Cледствия из аксиомы параллельных прямых

Утверждения, которые выводятся непосредственно из аксиом или теорем, называются следствиями. Рассмотрим некоторые следствия из аксиомы параллельных прямых.

Следствие 1. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Дано: прямые а и b параллельны, прямая с пересекает прямую а в точке А.

Доказать: прямая с пересекает прямую b.

Доказательство: если бы прямая с не пересекала прямую b, то через точку А проходили бы две прямые а и с, параллельные прямой b. Но это противоречит аксиоме параллельных прямых: через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной. Значит, прямая с пересекает прямую b.

Следствие 2. Если две прямые параллельны третьей прямой, то они параллельны.

Дано: прямые а и b параллельны прямой с. (а||с, b||с)

Доказать: прямая а параллельна прямой b.

Доказательство: допустим, что прямые а и b не параллельны, т.е. пересекаются в некоторой точке А. Тогда через точку А проходят две прямые а и b, параллельные прямой с. Но по аксиоме параллельных прямых через точку, не лежащую на данной прямой, проходит только одна прямая, параллельна данной. Значит, наше предположение неверно, следовательно, прямые а и b параллельны.

Список использованной литературы:

  1. Геометрия. 7-9 классы: учеб. для общеобразоват. организаций / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2013. – 383 с.: ил.
  2. Гаврилова Н.Ф. Поурочные разработки по геометрии 7 класс. - М.: «ВАКО», 2004, 288с. – (В помощь школьному учителю).
  3. Белицкая О.В. Геометрия. 7 класс. Ч.1. Тесты. – Саратов: Лицей, 2014. – 64 с.

Использованные изображения:

Сначала рассмотрим разницу между понятиями признак, свойство и аксиома.

Определение 1

Признаком называют некий факт, по которому можно определить истинность суждения об интересующем объекте.

Пример 1

Прямые являются параллельными, если их секущая образует равные накрест лежащие углы.

Определение 2

Свойство формулируется в том случае, когда есть уверенность в справедливости суждения.

Пример 2

При параллельных прямых их секущая образует равные накрест лежащие углы.

Определение 3

Аксиомой называют такое утверждение, которое не требует доказательства и принимается как истина без него.

Каждая наука имеет аксиомы, на которых строятся последующие суждения и их доказательства.

Аксиома параллельных прямых

Иногда аксиому параллельных прямых принимают в качестве одного из свойств параллельных прямых, но вместе с тем на ее справедливости строят другие геометрические доказательства.

Теорема 1

Через точку, которая не лежит на заданной прямой, на плоскости можно провести лишь одну прямую, которая будет параллельной заданной.

Аксиома доказательства не требует.

Свойства параллельных прямых

Теорема 2

Свойство1. Свойство транзитивности параллельности прямых:

Когда одна из двух параллельных прямых является параллельной третьей, то и вторая прямая будет ей параллельна.

Свойства требуют доказательств.

Доказательство:

Пусть имеются две параллельные прямые $a$ и $b$. Прямая $с$ параллельна прямой $а$. Проверим, будет ли в таком случае прямая $с$ параллельна и прямой $b$.

Для доказательства будем пользоваться противоположным суждением:

Представим, что возможен такой вариант, при котором прямая $c$ параллельна одной из прямых, например, прямой $a$, а другую – прямую $b$ – пересекает в некоторой точке $K$.

Получаем противоречие согласно аксиоме параллельных прямых. Получается ситуация, при которой в одной точке пересекаются две прямые, к тому же параллельные одной и той же прямой $a$. Такая ситуация невозможна, следовательно, прямые $b$ и $c$ пересекаться не могут.

Таким образом, доказано, что если одна из двух параллельных прямых является параллельной третьей прямой, то и вторая прямая параллельна третьей прямой.

Теорема 3

Свойство 2.

Если одна из двух параллельных прямых пересекается третьей, то ею будет пересекаться и вторая прямая.

Доказательство:

Пусть имеются две параллельные прямые $а$ и $b$. Также пусть имеется некоторая прямая $с$, которая пересекает одну из параллельных прямых, например, прямую $а$. Необходимо показать, что прямая $с$ пересекает и вторую прямую – прямую $b$.

Построим доказательство методом от противного.

Представим, что прямая $с$ не пересекает прямую $b$. Тогда через точку $К$ проходят две прямые $а$ и $с$, которые не пересекают прямую $b$, т. е. являются параллельными ей. Но такая ситуация противоречит аксиоме параллельных прямых. Значит, предположение было неверным и прямая $с$ пересечет прямую $b$.

Теорема доказана.

Свойства углов , которые образуют две параллельные прямые и секущая: накрест лежащие углы равны, соответственные углы равны, * сумма односторонних углов равна $180^{\circ}$.

Пример 3

Даны две параллельные прямые и третья прямая, перпендикулярная одно из них. Доказать, что эта прямая перпендикулярна и другой из параллельных прямых.

Доказательство .

Пусть имеем прямые $а \parallel b$ и $с \perp а$.

Поскольку прямая $с$ пересекает прямую $а$, то согласно свойству параллельных прямых она будет пересекать и прямую $b$.

Секущая $с$, пересекая параллельные прямые $а$ и $b$, образует с ними равные внутренние накрест лежащие углы.

Т.к. $с \perp а$, то углы будут по $90^{\circ}$.

Следовательно, $с \perp b$.

Доказательство завершено.












Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • дать представление о неизвестных учащимся аксиомах геометрии, повторить уже известные им аксиомы;
  • ввести аксиому параллельных прямых;
  • ввести понятие следствия из аксиом, теорем;
  • показать как используются аксиома параллельных прямых и следствия из неё при решении задач;
  • воспитание патриотизма, гордости за свою родину на примере великого русского математика Н.И.Лобачевского.

Оборудование: компьютер, проектор.

ХОД УРОКА

1. Проверка предыдущего домашнего задания

2. Повторение уже известных учащимся аксиом планиметрии

Учитель: В знаменитом сочинении Евклида «Начала» (III в. до н.э.) были систематизированы основные известные в то время геометрические сведения. Главное же − в «Началах» был развит аксиоматический подход к построению геометрии, который состоит в том, что сначала формулируются основные положения, не требующие доказательства (аксиомы), а затем на их основе посредством рассуждений доказываются другие утверждения (теоремы). Некоторые из аксиом, предложенных Евклидом, и сейчас используются в курсах геометрии.
Само слово «аксиома» происходит от греческого «аксиос», что означает «ценный, достойный». Полный список аксиом планиметрии, принятых в нашем курсе геометрии, приведён в приложениях в конце учебника на страницах 344-348. Эти аксиомы вы рассмотрите дома самостоятельно.
Некоторые из этих аксиом мы уже рассматривали. Вспомните и сформулируйте эти аксиомы.

Учащиеся:

1) Имеются, по крайней мере, три точки, не лежащие на одной прямой.
2) Через любые две точки проходит прямая, и притом только одна.
3) Из трёх точек прямой одна и только одна лежит между двумя другими.
4) Каждая точка О прямой разделяет её на две части (два луча) так, что любые две точки одного и того же луча лежат по одну сторону от точки О, а любые две точки разных лучей лежат по разные стороны от точки О.
5) Каждая прямая а разделяет плоскость на две части (две полуплоскости) так, что любые две точки одной и той же полуплоскости лежат по одну сторону от прямой а, а любые две точки разных полуплоскостей лежат по разные стороны от прямой а.
6) Если при наложении совмещаются концы двух отрезков, то совмещаются и сами отрезки.
7) На любом луче от его начала можно отложить отрезок, равный данному, и притом только один.
8) От любого луча в заданную полуплоскость можно отложить угол, равный данному неразвёрнутому углу, и притом только один.

Учитель: Какие прямые называются параллельными на плоскости?

Учащиеся: Две прямые на плоскости называются параллельными, если они не пересекаются.

Учитель: Сформулируйте признаки параллельности прямых.

Учащиеся:

1) Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
2) Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
3) Если при пересечении двух прямых секущей сумма односторонних углов равна 180˚ то прямые параллельны.

3. Новая тема. Аксиома параллельных прямых

Учитель: Решим задачу: «Через точку М, не лежащую на прямой а, проведите прямую, параллельную прямой а».

План решения задачи обсуждается всем классом. Один из учащихся записывает решение на доске (без записи в тетрадях).

Учитель: Возникает вопрос: можно ли через точку М провести ещё одну прямую, параллельную прямой а?
Этот вопрос имеет большую историю. В «Началах» Евклида содержится пятый постулат: «И если прямая, падающая на две прямые, образуют внутренние и по одну сторону углы, меньше двух прямых, то продолженные эти прямые неограниченно встретятся с той стороны, где углы меньше двух прямых». Прокл в V в.н.э. переформулировал постулат Евклида проще и понятнее: «Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной». Это и есть аксиома параллельных прямых. Отсюда видно, что рассмотренная выше задача имеет единственное решение.
Многие математики предпринимали попытки доказать пятый постулат, так как его формулировка слишком напоминала теорему. Все эти попытки каждый раз оказывались неудачными. И лишь в XIX в. было окончательно выяснено, что пятый постулат Евклида нельзя доказать, он сам является аксиомой.
Огромную роль в решении этого вопроса сыграл великий русский математик Николай Иванович Лобачевский (1792-1856).

4. Смотрим презентацию о Н.И.Лобачевском

5. Закрепление изученного. Решение задач

Дан ∆АВС. Сколько прямых, параллельных стороне АВ, можно провести через вершину С?

Решение.

Согласно аксиоме параллельных прямых, можно провести единственную прямую.

Через точку, не лежащую на прямой р, проведены четыре прямые. Сколько из этих прямых пересекают прямую р? Рассмотрите все возможные случаи.

Решение.

3 прямые 4 прямые

Ответ: 3 или 4 прямые.

Следствия из аксиомы параллельных прямых.

Утверждения, которые выводятся непосредственно из аксиом или теорем, называются следствиями. Рассмотрим следствия из аксиомы параллельных прямых.

Следствие 1˚. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Следствие 2˚. Если две прямые параллельны третьей прямой, то они параллельны. (Предлагается доказать учащимся самостоятельно).

Чертёж тот же.

Дано: а || b, с || b
Доказать: а || с
Доказательств о (метод «от противного»):

Пусть прямые а и с не параллельны. Тогда они пересекаются в некоторой точке М. Через точку М проходят две различные прямые (а и с), параллельные прямой b. Это противоречит аксиоме параллельных. Значит наше предположение не верно. А верно то, что а || с. Ч.т.д.
Второе следствие из аксиомы параллельных прямых является по сути дела ещё одним признаком параллельности прямых на плоскости.

Решение задач: №№ 217 (устно), 218 (устно), 198, 200, 213.

№ 217 (устно)

Прямые а и b параллельны прямой с. Докажите, что любая прямая, пересекающая прямую а, пересекает также и прямую b.

Решение.

Если а || b и b || с, то а || с (следствие 2˚).
Если произвольная прямая d ∩ а, то d ∩ b (следствие 1˚).

№ 218 (устно)

Прямые а и b пересекаются. Можно ли провести такую прямую, которая пересекает прямую а и параллельна прямой b? Ответ обоснуйте.

Решение .

Возьмём на прямой а точку А b. Через точку А можно провести единственную прямую, параллельную прямой b (аксиома параллельных). Построенная прямая будет пересекать прямую а, так как имеет с ней общую точку А.

Прямые а и bперпендикулярны к прямой р, прямая с пересекает прямую а. Пересекает ли прямая с прямую b?

Дано: ар, bр, с ∩ а
Найти: пересекает ли с прямую b?
Решение: если ар и bр, то а || b (теорема).
Если с ∩ а и а || b, то с ∩ b (следствие 1˚).
Ответ: с ∩ b.

На рисунке учебника АD || р и PQ || BC. Докажите, что прямая р пересекает прямые АВ, АЕ, АС, ВС, РQ.

На рисунке учебника СЕ = ED, ВЕ = EF и КЕ = AD. Докажите, что КЕ || ВС.

6. Подведение итогов

1) В чём заключается главная заслуга Евклида?
2) Что называется аксиомой?
3) Какие аксиомы мы знаем?
4) Кто из русских учёных построил стройную теорию неевклидовой геометрии?
5) Что называется следствием в математическом смысле слова?
6) Какие следствия мы сегодня узнали?

7. Задание на дом:

§2, п.27, 28, приложение об аксиомах геометрии стр. 344-348, вопросы 7-11 стр. 68, №199, 214.
№199: Прямая р параллельна стороне АВ треугольника АВС. Докажите, что прямые ВС и АС пересекают прямую р.
№214: Прямая, проходящая через середину биссектрисы AD треугольника АВС и перпендикулярная к AD, пересекает сторону АС в точке М. Докажите, что MD¦AB.

Литература:

  1. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия, 7-9: Учебник для общеобразовательных учреждений. − М.: Просвещение, 2003.
  2. Атанасян Л.С., Бутузов В.Ф., Глазков Ю.А., Некрасов В.Б., Юдина И.И. Изучение геометрии в 7, 8, 9 классах: Методические рекомендации к учебнику. Книга для учителя. − М.: Просвещение, 2003.
  3. Дорофеева А.В. Страницы истории на уроках математики: Книга для учителя. − М.: Просвещение, 2007.
  4. Википедия.

Рис.1-2

Например, дано задание провести две параллельные прямые, причем так, чтобы через данную точку М проходила хотя бы одна из прямых. Таким образом, через заданную точку М проведем взаимно перпендикулярные прямые МN и СD . А через точку N проведем вторую прямую АВ , она должна быть перпендикулярной к прямой МN .

Сделаем вывод: прямая АВ перпендикулярна к прямой МN и прямая СD тоже перпендикулярна в прямой МN , а так как данные прямые параллельны к одной прямой, то, как следствие прямая СD параллельна АВ . Значит, через точку М проходит прямая СD , которая параллельна прямой АВ . Узнаем: можно ли провести еще одну прямую через точку М , чтобы она была параллельна прямой АВ ?

Данное утверждение является ответом на наш вопрос: через точку на плоскости, которая не лежит на данной прямой, можно провести всего одну прямую, которая будет параллельна к данной прямой. Такое отвержение в другой формулировке без доказательств еще в давние времена принял ученый Евклид. Известно, что такие утверждения, принятые без доказательства, называют аксиомами.

Вышеописанное утверждение называется аксиомой о параллельных прямых. Данная аксиома Евклида имеет огромное значение для доказательства многих теорем.

Рассмотрим обратную теорему. Если прямая пересекает параллельные прямые, то и углы, лежащие при параллельных прямых накрест, соответственно равны.

Рис. 3

Доказательство: допустим, что АС и ВD являются параллельными прямыми, тогда прямая АВ является их секущей прямой. Нам нужно доказать, что ÐСАВ =Ð АВD .

Нам нужно провести так прямую АС1 , чтобы ÐС1АВ=ÐАВD . В соответствии с аксиомой параллельности прямых АС1||ВD , в условии же мы имеем АС||ВD . А это означает, что через данную точку А проходят две прямые, причем они параллельны прямой ВD . Получается противоречие аксиоме параллельности прямых, а это означает, что прямая АС1 проведена неверно.

Правильно будет, если ÐСАВ=ÐАВD . Сделаем вывод: в том случае, когда одной из параллельных прямых перпендикулярна данная прямая, то она будет перпендикулярна и ко второй прямой.

Получается, если (MN)^(CD) и (CD)||(AB) , то Ð1=Ð2=90о . А это значит: (MN)^(AB) (Рис. 1) .

Докажем теорему: если две прямые являются параллельными к третьей, то они будут параллельны одна ко второй.

Рис. 4

Пусть прямая a параллельна прямой с и прямая b тоже параллельна прямой с (рис. 4 а) . Нам нужно доказать, что a||b .

Предположим, что прямые a и b не являются параллельными, но они пересекаются в точке М (рис. 4 б) . А это значит, что две прямые a и b , которые параллельны к прямой с проходят через одну точку, а это полное противоречие аксиоме параллельности прямых. Значит наши прямые a и b параллельны.




Мы использовали и другие аксиомы, хотя особо не выделяли их. Так, сравнение 2-ух отрезков мы проводили с помощью наложения. Возможность такого наложения вытекает из аксиомы «На любом луче от его начала можно отложить отрезок, равный данному, и притом только один»




Эти аксиомы не вызывают сомнений и с помощью них доказываются другие утверждения. Такой способ зародился очень давно и был изложен в сочинении «Начала» ученого Евклида. Некоторые из аксиом Евклида - постулаты сейчас используются в геометрии а сама геометрия, изложенная в «Началах», называется Евклидовой геометрией.








Теоремы об углах, образованных двумя параллельными и секущей. Условие – это то, что дано. Заключение – то, что требуется доказать. Теорема, обратная данной –такая теорема, в которой условием является заключение данной теоремы, а заключением – условие данной теоремы.






Замечание. Если доказана некоторая теорема, то отсюда еще не следует справедливость обратного утверждения. Более того, обратное утверждение не всегда верно. Например, «вертикальные углы равны». Обратное утверждение: «если углы равны, то они вертикальные»- конечно же, неверно.