Дисахариды примеры веществ. Химические свойства дисахаридов и полисахаридов

Дисахариды – это сахароподобные сложные углеводы, молеку­лы которых при гидролизе распадаются на две молекулы моносахаридов. Молекулярная формула С 12 Н 22 О 11 . Дисахариды содержатся в продуктах природного происхождения: сахароза (свекловичный сахар) в большом количестве, до 28%, – в сахарной свёкле; лактоза (молочный сахар) – в молоке; трегалоза (грибной сахар) – в грибах; мальтоза (солодовый сахар) образуется при частичном гидролизе крахмала и др.

По своему строению дисахариды представляют собой гликози-ды. В зависимости от того, какой гидроксил второго моносахарида участвует в образовании связи с первым моносахаридом, различают дисахариды двух типов: восстанавливающие (редуцирующие); невосстанавливающие.

Восстанавливающие дисахариды называют гликозил-гликозами; связь между моносахаридными молекулами у этих дисахаридов образована за счёт полуацетального гидроксила одной молекулы и спиртового гидроксила (чаще всего при четвёртом атоме углерода) второй молекулы. Важнейшие представители: мальтоза, лактоза, целлобиоза. В растворе они находятся в таутомерных формах: циклической (полуацетальной) и гидроксикарбонильной (альдегидной).

лактоза лактоза

Строение. В состав дисахаридов могут входить два одинаковых или различных моносахарида в полуацетальной (циклической) форме.

Так, молекула мальтозы (солодовый сахар) состоит из двух мо­лекул α-D-глюкозы в пиранозной форме, связанных между собойl-4-α-гликозидной связью.

Во втором моносахаридном остатке молекулы мальтозы сохра­няется свободный полуацетальный гидроксил. По этой причине в растворе мальтоза может существовать в таутомерных формах: циклической и гидроксикарбонильной, находящихся между собой в динамическом равновесии.

мальтоза мальтоза

(полуацетальная форма) (гидроксикарбонильная форма)

По такому принципу построены все восстанавливающие диса­хариды (лактоза, целлобиоза и др.).

Свойства восстанавливающих (редуцирующих) дисахаридов. Восстанавливающие дисахариды – это кристаллические вещества, хорошо растворимые в воде, имеют сладкий вкус, гигроскопичны. Растворы этих дисахаридов нейтральны, обладают оптической активностью. В химическом отношении восстанавливающие дисахариды проявляют свойства альдегидов: дают реакцию серебряного зеркала, восстанавливают жидкость Фелинга, реагируют с реактивами на карбонильную группу (с фенилгидразином, гидроксиламином). За счёт полуацетального гидроксила дисахариды образуют гликозиды, а также проявляют свойства многоатомных спиртов: вступают в реакции алкилирования, ацилирования, дают качественную реакцию на многоатомные спирты (растворяют Сu(ОН) 2).

мальтоза (альдегидная форма) мальтобионовая кислота

Эта группа дисахаридов способна восстанавливать Ag + доAg 0 в реакции серебряного зеркала, Сu 2+ до Сu + в реакции с раствором Фелинга, поэтому они и называются восстанавливающими дисахаридами. Как все сложные углеводы, дисахариды способны гидролизоваться под действием минеральных кислот или ферментов.

С 12 Н 22 О 11 +Н 2 О
2С 6 Н 12 О 6

мальтоза глюкоза

Невосстанавливающие дисахариды называют гликозил-гликозидами; связь между моносахаридами у этих дисахаридов образована с участием обоих полуацетальных гидроксилов, поэтому они не могут переходить в другие таутомерные формы. Важнейшими их представителями являются сахароза и трегалоза.


трегалоза сахароза

Молекула трегалозы состоит из двух остатков α-D-глюкопи-ранозы, молекула сахарозы – из остаткаα-D-глюкопиранозы и остаткаβ-D-фруктофуранозы. Так как у дисахаридов этой группы связь между моносахаридами осуществляется за счёт обоих полуацетальных гидроксилов, они не могут таутомерно переходить в оксикарбонильную форму, следовательно, не могут давать реакции на карбонильную группу, в том числе и на альдегидную группу (не дают реакцию серебряного зеркала, не реагируют с раствором Фелинга). Такие дисахариды не способны проявлять восстанавливающие свойства, поэтому их называют невосстанавливающими дисахаридами. Они проявляют свойства многоатомных спиртов (растворяют гидроксид меди, вступают в реакции алкилирования и ацилирования), как все сложные углеводы гидролизуются в присутствии минеральных кислот или под действием ферментов.

Строение и свойства сахарозы. Сахароза (свекловичный са­хар) – один из наиболее давно известных человеку пищевых продуктов. Первоначально сахароза была выделена из сахарного тростника, а затем – из сахарной свеклы. Сахароза содержится и во многих других растениях (кукуруза, клён, пальма и др.).

Молекулярный состав сахарозы С 12 Н 22 О 11 .

Молекула сахарозы состоит из двух моносахаридов: глюкозы в α-D-пиранозной форме и фруктозы вβ-D-фуранозной форме, свя­занных между собой 1-2-гликозидной связью с участием двух полуацетальных (гликозидных) гидроксилов. В молекуле сахарозы нет свободных полуацетальных гидроксилов, поэтому она не может таутомерно переходить в гидроксикарбонильную форму.

При нагревании выше 160°С сахароза частично разлагается, выделяя воду и превращаясь в бурую массу – карамель.

Водный раствор сахарозы растворяет гидроксид меди, образуя раствор сахарата меди, проявляет при этом свойства многоатомных спиртов. При нагревании раствора сахарозы в присутствии минеральных кислот сахароза гидролизуется, в результате образуется смесь глюкозы и фруктозы в равных количествах (искусственный мёд). Процесс гидролиза сахарозы называется инверсией, так как при этом наблюдается изменение правого вращения раствора на левое.

Сахароза широко используется как пищевой продукт, в произ­водстве кондитерских, хлебобулочных изделий, варенья, компотов, джемов и др. В фармакологии используется для приготовления сиропов, микстур, порошков и т.п.

Эфиры сахарозы и высших жирных кислот обладают высокой моющей способностью и используются как промышленные детергенты. Эти продукты не имеют запаха, совершенно неядовиты и полностью разрушаются бактериями при биологической самоочистке воды.

Диэфиры высших жирных кислот и сахарозы используются как эмульгаторы при получении маргарина, лекарственных препаратов и в косметике.

Октаметилсахароза применяется в промышленности пластмасс как пластификатор.

Октаацетат сахарозы используется в качестве промежуточного слоя при получении стекла триплекс.

Отходы сахарного производства (патока) употребляются для производства этилового спирта и в кондитерской промышленности.

Если белки считаются органическими соединениями, наиболее разнообразными по строению и функциям, то углеводы являются самыми распространенными в природе. С ними мы сталкиваемся повсеместно: сахар, крахмал, бумага, хлопчатобумажная ткань и много других веществ и материалов построены из дисахаридов и полисахаридов. Химические свойства этих соединений и их значение для жизни человека мы и рассмотрим в нашей статье.

Обмен углеводов в клетке

Сахароза является одним из важнейших дисахаридов, синтезируемых растениями, например, такими, как сахарный тростник или сахарная свекла. Соединение выполняет энергетическую функцию, так его расщепление приводит к выделению большого количества энергии. Гидролиз сахарозы происходит в клетках человеческого организма и приводит к образованию молекул глюкозы и фруктозы:

С 12 Н 22 О 11 + Н 2 О = С 6 Н 12 О 6 + С 6 Н 12 О 6

Главные факторы проведения гидролиза в лабораторных или промышленных условиях - это нагревание и избыток ионов водорода, выполняющих каталитическую функцию в реагирующей смеси. Остатки фруктозы и глюкозы в дисахариде представлены своей циклической формой и соединены между собой благодаря кислородному атому. Сахароза лишена свободных альдегидных групп, вот почему у нее не происходит реакция серебряного зеркала, и углевод не проявляет восстановительных свойств.

Это подтверждают приведенные выше уравнения реакций дисахаридов. Химические свойства веществ, а именно легли в основу классификации углеводов.

Виды углеводов

Вещества, не расщепляющиеся под действием воды, например, фруктоза, находящаяся в меде и большинстве фруктов, а также глюкоза - это моносахариды или монозы. Если в процессе гидролиза углевод разлагается на две молекулы простейших сахаров, он относится к дисахариду. К этому классу относятся сахароза и лактоза. В случае, если из одной макромолекулы органического вещества образуется множество моносахаридных остатков - говорят о полисахаридах. К ним относится хорошо известный растительный полимер - крахмал, накапливающийся в листьях, плодах и семенах растений в процессе фотосинтеза.

В панцире членистоногих и клетках грибов находится углевод, который, в отличие от ранее рассмотренных соединений, содержит не только атомы углерода, кислорода и водорода, но еще и азот. Интересное строение и особенности протекания реакций, отличающие ее от химических свойств дисахаридов, имеет гиалуроновая кислота, представляющая основу межклеточного вещества у животных и человека. линейного строения, являющийся, по сути, одной гигантской макромолекулой, содержащей до 50 000 моно мерных звеньев. Наибольшее ее количество находится в дерме, хрящах, стекловидном теле органа зрения. Животный крахмал - гликоген синтезируется в клетках животных и человека из остатков глюкозы и откладывается в виде запасного энергетического материала в клетках печени - гепатоцитах.

Химические свойства дисахаридов на примере лактозы

Молоко - первый и важнейший продукт питания для детенышей млекопитающих: животных и человека. Кроме молочного белка - казеина, жира, воды, минеральных солей и витаминов, оно содержит углевод - лактозу или молочный сахар. Ее молекулы состоят из остатков моносахаридов - глюкозы и галактозы, содержащих по шесть атомов углерода. В процессе переваривания молока в желудочно-кишечном тракте лактоза расщепляется до моносахаридов.

Они всасываются капиллярами ворсинок тонкого кишечника. Все химические свойства дисахаридов проходят с участием ферментов, например, лактазы, ускоряющей гидролиз молочного сахара. Снижение уровня этого вещества, связанное, как с генетической предрасположенностью, так и с индивидуальными особенностями (возрастом, спецификой питания), вызывает заболевание - гиполактазию.

Восстановительные свойства углеводов

Молекулы лактозы состоят из остатков галактозы и глюкозы, имеющих открытые углеродные цепи и свободные альдегидные комплексы. Присутствие функциональной группы обуславливает возможность проведения реакций восстановления, например, с водородом. В результате, комплекс атомов -CHO, входящий в состав глюкозы, восстанавливается до гидроксильной группы, и образуется шестиатомный спирт - сорбит. Происходящий процесс восстановления можно выразить уравнениями, и химические свойства дисахаридов, таким образом, будут иметь следующий вид:

СН 2 OH - (CHOH) 4 - COH + H 2 = (температура, катализатор Ni) => CH 2 OH -(CHOH) 4 -CH 2 OH

Они зависят от того, какие формы глюкозы входят в состав углевода: циклические или с открытым углеродным скелетом.

Важнейшие полисахариды и особенности их строения

Белый порошок, не растворяющийся в холодной воде, а в горячей, образующий клейстер - это крахмал. Наибольшее его содержание характерно для семян риса и кукурузы, клубней картофеля. Макромолекула вещества состоит из остатков циклической альфа-глюкозы. В кислой среде он реакции имеет следующий вид:

(C 6 H 10 O 5) n + nH 2 O - H 2 SO 4 → nC 6 H 12 O 6

Химические свойства дисахаридов и полисахаридов имеют черты сходства: все они способны к гидролизу.

Целлюлоза, входящая в состав древесины, содержит мономеры - остатки бета-глюкозы. Нагревание вещества с концентрированной нитратной кислотой приводит к образованию сложного эфира - три нитрата целлюлозы, применяемого в пиротехнике.

В нашей статье мы изучили особенности химических свойств дисахаридов и полисахаридов и рассмотрели их распространение в природе.

Олигосахариды – углеводы, молекулы которых содержат от 2 до 10 остатков моносахаридов, соединенных гликозидными связями. В соответствии с этим различают дисахариды, трисахариды и т.д. Дисахариды – сложные сахара, каждая молекула которых при гидролизе распадается на две молекулы моносахаридов. Дисахариды наряду с полисахаридами являются одними из основных источников углеводов в пище человека и животных. По строению дисахариды – это гликозиды, в которых 2 молекулы моносахаридов соединены гликозидной связью. Среди дисахаридов наиболее широко известны мальтоза, лактоза и сахароза. Мальтоза, являющаяся α-глюкопиранозил-(1–>4)-α-глюкопиранозой, образуется как промежуточный продукт при действии амилаз на крахмал (или гликоген), содержит 2 остатка α-D-глюкозы (название сахара,полуацетальный гидроксил которого участвует в образовании гликозидной связи, оканчивается на≪ил≫).

Мальтоза

В молекуле мальтозы у второго остатка глюкозы имеется свободный полуацетальный гидроксил. Такие дисахариды обладают восстанавливающими свойствами. Одним из наиболее распространенных дисахаридов является сахароза обычный пищевой сахар. Молекула сахарозы состоит из одного остатка D-глюкозы и одного остатка D-фруктозы. Следовательно, это α-глюко-пиранозил-(1–>2)-β-фруктофуранозид:

Сахароза

В отличие от большинства дисахаридов сахароза не имеет свободного полуацетального гидроксила и не обладает восстанавливающими свойствами. Гидролиз сахарозы приводит к образованию смеси, которую называют инвертированным сахаром. В этой смеси преобладает сильно левовращающая фруктоза, которая инвертирует (меняет на обратный) знак вращения правовращающего раствора исходной сахарозы. Дисахарид лактоза содержится только в молоке и состоит из D-галактозы и D-глюкозы. Это – β-галактопиранозил-(1–>4)-глюкопираноза:

Благодаря наличию в молекуле свободного полуацетального гидроксила (в остатке глюкозы) лактоза относится к числу редуцирующих дисахаридов. Среди природных трисахаридов наиболее известна рафиноза, содержащая остатки фруктозы, глюкозы и галактозы. Рафиноза в больших количествах содержится в сахарной свекле и во многих других растениях. В целом олигосахариды, присутствующие в растительных тканях, разнообразнее по своему составу, чем олигосахариды животных тканей.

30 Вопрос. Гетерополисахариды

    Хондроитинсульфаты – составные части сердечных клапанов, носовой перегородки, хрящевых тканей. М.б. нескольких типов. Хандроитин – 4-сульфат и 6-сульфат. Гетерополисахарид состоит изповторяющихся звеньев дисахаридов β(Д)-глюкуранозил-1,3-β(Д,N)-ацетилгалактозамин. Сульфат в положении 4 и 6.

    Глалуроновая ксилота – содержится в соединительных, покровных тканях, входит в состав стекловидного тела глаза. Вязкое в-во, хорошо предохраняет глазные кости от внешних воздействий. При гидролизе образует глюкуроновую к-ту иN-ацетилглюкозамин. Связь 1,3-β-гликозидная.

    Гепарин –содержится в печени, в селезенке, сильный антикоагулянт, предохраняет кровь от свертывания (1 мг гепарина предохраняет от свертывания 500мл) присутствует на поверхности многих клеток и внутри клеток.

В мед.практике используется для лечения тромбозов, ожогов, при переливании крови в качестве стабилизатора.

В состав входят повторяющиеся единицы из остатков 6-ти сахаров N-ацетилглюкозамин, его сульфопроизводное, неацетилированное производное.

Гомополисахариды (крахмал, целлюлоза, пектин и другие)

При гидролизе дают глюкозу

Крахмал переваривается под действием амилазы (1,4-гликозидазы), который расщепляет α-1,4-гликозидные связи.

Крахмал состоит из амилозы (лин.строение и амилопектина) разветвленное строение, но каждые 25 фрагментов.

Все крахмалы отличаются по кол-ву амилозы амилопектина.

При кислотном гидролизе крахмал расщепляется на декстрины (красное окрашивание). Окраска с иодом говорит о расщеплении. Если окраска бледная, то то расщепление больше.

Гликоген напоминает амилопектин (расщепление на каждые 10-12 связей) в печени, в мышцах запасное питат.в-во.

Целлюлоза имеет 1,4-β-гликозидную связь.

Пектиновые к-ты – полисахариды фруктов, плодов, овощей, представляют собой метиловые эфиры галактуроновой к-ты, связь 1,4-α-гликозидная.

Гликозиды – производные углеводороды по гликозидному гидролизу.

Амигдалин – входит в состав миндаля. Глюкозы, связанные между собой связями 1,6- β-гликозидными.

Гликованилин (глюкоза, β гликозидная связь).

Синигрин (входит в состав горчицы).

Нейраминовая к-та – продукт конденсации пировиноградной к-ты иN-ацетилмонозамина. Входит в состав гангмозидов (в липидах).


Мурановая кислота (входит в состав стенок бактерий).

Дубильные в-ва – растительного происхождения. Растворимы в воде, дают с хлорным железом окрашенные растворы. Делят на 2 типа: гидролизуемые и негидролизуемые (конденсируются приT с килотой).

Iтип –тонины – производные глюкозы и ди-, триммеров галловых кислот.

(галловая кислота
, способна образовывать диоксиды)

Тонины могут быть различными:

Тонин Фишера имеет структуру:

ДГ – дигаловая кислота

Г – галловая кислота

Точная структура природных танинов не установлена.

Используется: в медицине, фармации, для выделения алкалоидных реагентов.

Mr м.б. до 3000, содержатся в коре деревьев, в плодах некоторых растений.

Существуют эллаговые дуб.в-ва , отличающиеся тем, что при гидролизе образуют нерастворимую эллаговую к-ту.

IIтип –капихинн (конденсируемые дубильные в-ва).

Ф
равоноиды
: соединения: лейкоантоциан, катехин,флавонон, флавонол, флавон, антициан.

Катехин содержат в А и В ОН-, СН2- и различаются по ним. В природе не образуют гликозиды. Легко окисляются и способны к полимеризации, кристаллические бесцветные в-ва. Содержатся в плодах яблони, вишни, груши, в листьях побегов чайного дерева.

Ферментативный процесс приводит к димеризации. Изучает виноделие, чайная промышленность, производство какао.

Соединения – флавоноиды обладают витаминной способностью (Р). Увеличивают эластичность кров.капилляров, больше всего присуще катехину.

В
итамин Р – гликозид кварцетила

Кварцетил – агликон 6β(α)-рамнозидо-(Д)-глюкоза-рамноза. Связь за счет 6 угл.атома в глюкозе. При отсутствии рутина в пище капилляры становятся проницаемыми -> пурпурная болезнь.

Антоцианы – красящие в-ва растений (дильфинидин, пипоргонидин, цианидин(роза и василек)). Отличаются радикалами. Существуют в виде глюкозидов.


Углеводы при сахарном диабете

Сахара (сахариды, углеводы) это распостраненные в природе органические соединения. Они являются производными многоатомных спиртов. По размеру и структуре молекул они делятся на две группы: простые сахара (моносахариды) и сложные (к ним относятся дисахариды и полисахариды).

По наличиню характерных функциональных групп, кроме многоатомных (гидроксиловых) групп, которые входят в состав всех сахаридов, отличают: альдозы – имеющие альдегидные группы, и – имеющие кетоновые группы.

Подробнее о различных типах углеводов читайте ниже в собранных мною статьях по этой тематике.

Углеводы - органические соединения, чаще всего природного происхождения, состоящие только из углерода, водорода и кислорода. Углеводы играют огромную роль в жизнедеятельности всех живых организмов. Свое название данный класс органических соединений получил за то, что первые изученные человеком углеводы имели общую формулу вида Cx(H2O)y .

Т.е. их условно посчитали соединениями углерода и воды. Однако позднее оказалось, что состав некоторых углеводов отклоняется от этой формулы. Например, такой углевод как дезоксирибоза имеет формулу С5Н10О4. В то же время существуют некоторые соединения, формально соответствующие формуле Cx(H2O)y, однако к углеводам не относящиеся, как, например, формальдегид (СН2О) и уксусная кислота (С2Н4О2).

Тем не менее, термин «углеводы» исторически закрепился за данным классом соединений, в связи с чем повсеместно используется и в наше время.

Классификация углеводов

В зависимости от способности углеводов расщепляться при гидролизе на другие углеводы с меньшей молекулярной массой их делят на простые (моносахариды) и сложные (дисахариды, олигосахариды, полисахариды). Как легко догадаться, из простых углеводов, т.е. моносахаридов, нельзя гидролизом получить углеводы с еще меньшей молекулярной массой.

При гидролизе одной молекулы дисахарида образуются две молекулы моносахарида, а при полном гидролизе одной молекулы любого полисахарида получается множество молекул моносахаридов.

Химические свойства моносахаридов на примере глюкозы и фруктозы

Как можно заметить, и в молекуле глюкозы, и в молекуле присутствует по 5 гидроксильных групп, в связи с чем их можно считать многоатомными спиртами. В составе молекулы глюкозы имеется альдегидная группа, т.е. фактически глюкоза является многоатомным альдегидоспиртом. В случае фруктозы можно обнаружить в ее молекуле кетонную группу, т.е. фруктоза является многоатомным кетоспиртом.

Химические свойства глюкозы и фруктозы как карбонильных соединений

Все моносахариды могут реагировать в присутствии катализаторов с водородом. При этом карбонильная группа восстанавливается до спиртовой гидроксильной. Молекула глюкозы содержит в своем составе альдегидную группу, в связи с чем логично предположить, что ее водные растворы дают качественные реакции на альдегиды.

Внимание!

И действительно, при нагревании водного раствора глюкозы со свежеосажденным гидроксидом меди (II) так же, как и в случае любого другого альдегида, наблюдается выпадение из раствора кирпично-красного осадка оксида меди (I). При этом альдегидная группа глюкозы окисляется до карбоксильной – образуется глюконовая кислота. Также глюкоза вступает и в реакцию «серебряного зеркала» при действии на нее аммиачного раствора оксида серебра.

Однако, в отличие от предыдущей реакции вместо глюконовой кислоты образуется ее соль – глюконат аммония, т.к. в растворе присутствует растворенный аммиак. Фруктоза и другие моносахариды, являющиеся многоатомными кетоспиртами, в качественные реакции на альдегиды не вступают.

Химические свойства глюкозы и фруктозы как многоатомных спиртов

Поскольку моносахариды, в том числе глюкоза и фруктоза, имеют в составе молекул несколько гидроксильных групп. Все они дают качественную реакцию на многоатомные спирты. В частности, в водных растворах моносахаридов растворяется свежеосажденный гидроксид меди (II). При этом вместо голубого осадка Cu(OH)2 образуется темно-синий раствор комплексных соединений меди.

Дисахариды. Химические свойства

Дисахаридами называют углеводы, молекулы которых состоят из двух остатков моносахаридов, связанных между собой за счет конденсации двух полуацетальных гидроксилов либо же одного спиртового гидроксила и одного полуацетального. Связи, образующиеся таким образом между остатками моносахаридов, называют гликозидными. Формулу большинства дисахаридов можно записать как C12H22O11.

Наиболее часто встречающимся дисахаридом является всем знакомый сахар, химиками называемый сахарозой. Молекула данного углевода образована циклическими остатками одной молекулы глюкозы и одной молекулы фруктозы. Связь между остатками дисахаридов в данном случае реализуется за счет отщепления воды от двух полуацетальных гидроксилов.

Поскольку связь между остатками моносахаридов образована при конденсации двух ацетальных гидроксилов, для молекулы сахара невозможно раскрытие ни одного из циклов, т.е. невозможен переход в карбонильную форму. В связи с этим сахароза не способна давать качественные реакции на альдегиды.

Подобного рода дисахариды, которые не дают качественные реакции на альдегиды, называют невосстанавливающими сахарами. Тем не менее, существуют дисахариды, которые дают качественные реакции на альдегидную группу. Такая ситуация возможна, когда в молекуле дисахарида остался полуацетальный гидроксил из альдегидной группы одной из исходных молекул моносахаридов.

В частности, в реакцию с аммиачным раствором оксида серебра, а также гидроксидом меди (II) подобно альдегидам вступает мальтоза.

Дисахариды как многоатомные спирты

Дисахариды, являясь многоатомными спиртами, дают соответствующую качественную реакцию с гидроксидом меди (II), т.е. при добавлении их водного раствора ко свежеосажденному гидроксиду меди (II) нерастворимый в воде голубой осадок Cu(OH)2 растворяется с образованием темно-синего раствора.

Полисахариды. Крахмал и целлюлоза

Полисахариды - сложные углеводы, молекулы которых состоят из большого числа остатков моносахаридов, связанных между собой гликозидными связями. Есть и другое определение полисахаридов. Полисахаридами называют сложные углеводы, молекулы которых образуют при полном гидролизе большое число молекул моносахаридов.

В общем случае формула полисахаридов может быть записана как (C6H11O5)n. Крахмал – вещество, представляющее собой белый аморфный порошок, не растворимый в холодной воде и частично растворимый в горячей с образованием коллоидного раствора, называемого в быту крахмальным клейстером.

Крахмал образуется из углекислого газа и воды в процессе фотосинтеза в зеленых частях растений под действием энергии солнечного света. В наибольших количествах крахмал содержится в картофельных клубнях, пшеничных, рисовых и кукурузных зернах. По этой причине указанные источники крахмала и являются сырьем для его получения в промышленности.

Целлюлоза – вещество, в чистом состоянии представляющее собой белый порошок, не растворимый ни в холодной, ни в горячей воде. В отличие от крахмала целлюлоза не образует клейстер. Практически из чистой целлюлозы состоит фильтровальная бумага, хлопковая вата, тополиный пух.

И крахмал, и целлюлоза являются продуктами растительного происхождения. Однако, роли, которые они играют в жизни растений, различны. Целлюлоза является в основном строительным материалом, в частности, главным образом ей образованы оболочки растительных клеток. Крахмал же несет в основном запасающую, энергетическую функцию.

Источник: https://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/uglevody

Виды углеводов

Выделяют три основных вида углеводов:

  • Простые (быстрые) углеводы или сахара: моно- и дисахариды
  • Сложные (медленные) углеводы: олиго- и полисахариды
  • Неусваиваемые, или волокнистые, углеводы определяются как пищевая клетчатка.

Сахара

Различают два вида сахаров:

  • моносахариды – моносахариды содержат одну сахарную группу, как, например, глюкоза, фруктоза или галактоза.
  • дисахариды – дисахариды образованы остатками двух моносахаридов и представлены, в частности, сахарозой (обычный столовый сахар) и лактозой.

Сложные углеводы

Полисахариды представляют собой углеводы, содержащие три и более молекул простых углеводов. К данному виду углеводов относятся, в частности, декстрины, крахмалы, гликогены и целлюлозы. Источниками полисахаридов являются крупы, бобовые, картофель и другие овощи.

Источник: http://sportwiki.to/%D0%92%D0%B8%D0%B4%D1%8B_%D1%83%D0%B3%D0%BB%D0%B5%D0%B2%D0%BE%D0%B4%D0%BE%D0%B2

Углеводы, моносахариды, полисахариды, мальтоза, глюкоза, фруктоза

Углеводы

Углеводы – это обширная группа органических соединений, которые играют большую роль в жизнедеятельности организма. Распространены углеводы главным образом в растительном мире. Организму человека требуется 400-500 г углеводов в сутки (в том числе не менее 80 г сахаров). Они являются важным источником энергии.

Усвояемость углеводов, содержащихся в фруктах, составляет 90 %; в и молочных продуктах – 98; в столовом сахаре – 99 %. Примерами углеводов могут служить глюкоза (С6Н2О6), или виноградный сахар, названный так из-за его большого содержания в ; тростниковый или свекловичный сахар (С6Н22011); крахмал и целлюлоза (СбН10О5).

Эти вещества состоят из углерода, водорода и кислорода. Причем соотношение двух последних элементов такое же, как в воде, т. е. на два атома водорода приходится один атом кислорода. Таким образом, углеводы как бы построены из углерода и воды, отсюда и произошло их название. Углеводы делятся на моносахариды (например, глюкоза) и полисахариды.

Полисахариды в свою очередь разделяются на низкомолекулярные, или олигосахариды (представителем их является свекловичный сахар), и высокомолекулярные, например крах – мал и целлюлоза. Молекулы полисахаридов построены из остатков молекул моносахаридов и при гидролизе расщепляются на более простые углеводы.

Моносахариды

Из моносахаридов наибольшее значение для организма человека – имеют глюкоза, фруктоза, галактоза и др. Все они кристаллические вещества, растворимые в воде. Глюкоза в свободном состоянии распространена в плодах многих растений. В связанном состоянии она находится в растениях в виде полисахаридов (сахарозы, мальтозы, крахмала, декстрина, целлюлозы и др.). В промышленности глюкозу получают из крахмала.

Безводная глюкоза плавится при температуре 146 С, она хорошо растворима в воде Глюкоза примерно в 2 раза менее сладкая, чем сахароза. При действии на глюкозу сильных окислителей образуется сахарная кислота. При восстановлении она переходит в шестиатомный спирт – .

Внимание!

Существует три вида углеводов:

  • моносахариды;
  • дисахариды;
  • полисахариды.

Основными моносахаридами являются глюкоза и фруктоза, состоящие из одной молекулы, благодаря чему эти углеводы быстро расщепляются, моментально поступая в кровь. Клетки мозга “подпитываются” энергией благодаря глюкозе: так, суточная норма глюкозы, необходимой для мозга, равна 150 г, что составляет одну четвертую всего объема данного углевода, получаемого в день с пищей.

Особенность простых углеводов в том, что они, быстро перерабатываясь, не трансформируются в жиры, тогда как сложные углеводы (при условии чрезмерного их употребления) могут откладываться в организме в виде жира. Моносахариды присутствуют в большом количестве во многих фруктах и овощах, а также в меде.

Данные углеводы, к которым относятся сахароза, лактоза и мальтоза, нельзя назвать сложными, так как в состав их входят остатки двух моносахаридов. Для переваривания дисахаридов требуется более длительное время по сравнению с моносахаридами.

Интересный факт! Доказано, что дети и подростки реагируют на увеличенное употребление углеводов, входящих в состав рафинированных (или очищенных) продуктов, так называемым сверхактивным (или гиперактивным) поведением. В случае последовательного исключения из рациона таких продуктов, к которым относятся сахар, белая мука, макаронные изделия и белый рис, поведенческие расстройства существенно уменьшатся.

При этом важно увеличить потребление свежих овощей и фруктов, бобовых, орехов, сыра. Дисахариды присутствуют в молочных продуктах, макаронах и изделиях, содержащих рафинированный сахар. Молекулы полисахаридов включают десятки, сотни, а иногда и тысячи моносахаридов.

Полисахариды (а именно крахмал, клетчатка, целлюлоза, пектин, инулин, хитин и гликоген) наиболее важны для организма человека по двум причинам:

  • они долго перевариваются и усваиваются (в отличие от простых углеводов);
  • содержат множество полезных веществ, среди которых витамины, минералы и белки.

Много полисахаридов присутствует в волокнах растений, вследствие чего один прием пищи, основой которой являются сырые либо вареные овощи, может практически в полном объеме удовлетворить суточную норму организма в веществах, являющихся источниками энергии.

Благодаря полисахаридам, во-первых, поддерживается необходимый уровень сахара, во-вторых, мозг обеспечивается необходимой ему подпиткой, что проявляется усилением концентрации внимания, улучшением памяти и повышением умственной активности. Полисахариды содержатся в овощах, фруктах, зерновых культурах, а также печени животных.

Польза углеводов:

  1. Стимулирование перистальтики желудочно-кишечного тракта.
  2. Поглощение и выведение токсических веществ и холестерина.
  3. Обеспечение оптимальных условий для функционирования нормальной микрофлоры кишечника.
  4. Укрепление иммунитета.
  5. Нормализация обмена веществ.
  6. Обеспечение полноценной работы печени.
  7. Обеспечение постоянного поступления сахара в кровь.
  8. Предупреждение развития опухолей в желудке и кишечнике.
  9. Восполнение витаминов и минералов.
  10. Обеспечение энергией мозга, а также центральной нервной системы.
  11. Способствование выработке эндорфинов, которые называют “гормонами радости”.
  12. Облегчение проявления предменструального синдрома.

Суточная потребность углеводов

Потребность в углеводах напрямую зависит от интенсивности умственных и физических нагрузок, составляя в среднем 300 – 500 г в день, из которых минимум 20 процентов должны составлять легкоусвояемые углеводы. Пожилые люди должны включать в свой ежедневный рацион не более 300 г углеводов, при этом количество легкоусвояемых должно варьироваться в пределах 15 – 20 процентов.

При ожирении и иных заболеваниях необходимо ограничить количество углеводов, причем делать это надо постепенно, что позволит организму без особых проблем приспособиться к измененному обмену веществ. Рекомендуется начинать ограничение с 200 – 250 г в день на протяжении недели, после чего объем поступающих с пищей углеводов доводится до 100 г в сутки.

Резкое снижение употребления углеводов на протяжении длительного времени (как и недостаток их в питании) приводит к развитию следующих нарушений:

Перечисленные явления проходят после употребления сахара либо иной сладкой пищи, но прием таких продуктов должен быть дозированным, что предохранит организм от набора лишних килограмм. Вреден для организма и избыток углеводов (особенно легкоусвояемых) в рационе, способствующий повышению сахара, вследствие чего часть углеводов не используется, идя на образование жира, что провоцирует развитие атеросклероза, сердечно-сосудистых болезней, метеоризма, сахарного диабета, ожирения, а также кариеса.

В каких продуктах содержатся углеводы?

Из приведенного ниже списка углеводов каждый сможет составить вполне разнообразный рацион (с учетом того, что это далеко не полный список продуктов, в состав которых входят углеводы). Углеводы содержатся в нижеприведенных продуктах:

Лишь сбалансированное питание обеспечит организм энергией и здоровьем. Но для этого необходимо правильно организовать свой рацион. И первым шагом к здоровому питанию станет завтрак, состоящий из сложных углеводов. Так, порция цельнозерновой каши (без заправок, мяса и ) обеспечит организм энергией минимум на три часа.

В свою очередь, при употреблении простых углеводов (речь идет о сладкой сдобе, различных рафинированных продуктах, сладком кофе и чае) мы испытываем мгновенное чувство насыщения, но при этом в организме происходит резкий подъем сахара в крови, сменяемый быстрым спадом, за которым снова появляется чувство .

Почему так происходит? Дело в том, что поджелудочная железа очень сильно перегружается, поскольку ей приходится выделять , чтобы переработать рафинированные сахара. Результат такой перегрузки – понижение уровня сахара (иногда ниже нормы) и появление чувства голода.

Во избежание перечисленных нарушений рассмотрим каждый углевод в отдельности, определив его пользу и роль в обеспечении организма энергией.

Наименование параметра Значение
Тема статьи: Дисахариды
Рубрика (тематическая категория) Химия

Дисахариды – это сахароподобные сложные углеводы, молеку­лы которых при гидролизе распадаются на две молекулы моносахаридов. Молекулярная формула С 12 Н 22 О 11 . Дисахариды содержатся в продуктах природного происхождения: сахароза (свекловичный сахар) в большом количестве, до 28%, – в сахарной свёкле; лактоза (молочный сахар) – в молоке; трегалоза (грибной сахар) – в грибах; мальтоза (солодовый сахар) образуется при частичном гидролизе крахмала и др.

По своему строению дисахариды представляют из себягликози-ды. Учитывая зависимость оттого, какой гидроксил второго моносахарида участвует в образовании связи с первым моносахаридом, различают дисахариды двух типов: восстанавливающие (редуцирующие); невосстанавливающие.

Восстанавливающие дисахариды называют гликозил-гликозами; связь между моносахаридными молекулами у этих дисахаридов образована за счёт полуацетального гидроксила одной молекулы и спиртового гидроксила (чаще всœего при четвёртом атоме углерода) второй молекулы. Важнейшие представители: мальтоза, лактоза, целлобиоза. В растворе они находятся в таутомерных формах: циклической (полуацетальной) и гидроксикарбонильной (альдегидной).

лактоза лактоза

Строение. В состав дисахаридов могут входить два одинаковых или различных моносахарида в полуацетальной (циклической) форме.

Так, молекула мальтозы (солодовый сахар) состоит из двух мо­лекул α-D-глюкозы в пиранозной форме, связанных между собой l-4-α-гликозидной связью.

Во втором моносахаридном остатке молекулы мальтозы сохра­няется свободный полуацетальный гидроксил. По этой причинœе в растворе мальтоза может существовать в таутомерных формах: циклической и гидроксикарбонильной, находящихся между собой в динамическом равновесии.

мальтоза мальтоза

(полуацетальная форма) (гидроксикарбонильная форма)

По такому принципу построены всœе восстанавливающие диса­хариды (лактоза, целлобиоза и др.).

Свойства восстанавливающих (редуцирующих) дисахаридов. Восстанавливающие дисахариды - ϶ᴛᴏ кристаллические вещества, хорошо растворимые в воде, имеют сладкий вкус, гигроскопичны. Растворы этих дисахаридов нейтральны, обладают оптической активностью. В химическом отношении восстанавливающие дисахариды проявляют свойства альдегидов: дают реакцию серебряного зеркала, восстанавливают жидкость Фелинга, реагируют с реактивами на карбонильную группу (с фенилгидразином, гидроксиламином). За счёт полуацетального гидроксила дисахариды образуют гликозиды, а также проявляют свойства многоатомных спиртов: вступают в реакции алкилирования, ацилирования, дают качественную реакцию на многоатомные спирты (растворяют Сu(ОН) 2).

мальтоза (альдегидная форма) мальтобионовая кислота

Эта группа дисахаридов способна восстанавливать Ag + до Ag 0 в реакции серебряного зеркала, Сu 2+ до Сu + в реакции с раствором Фелинга, в связи с этим они и называются восстанавливающими дисахаридами. Как всœе сложные углеводы, дисахариды способны гидролизоваться под действием минœеральных кислот или ферментов.

С 12 Н 22 О 11 +Н 2 О2С 6 Н 12 О 6

мальтоза глюкоза

Невосстанавливающие дисахариды называют гликозил-гликозидами; связь между моносахаридами у этих дисахаридов образована с участием обоих полуацетальных гидроксилов, в связи с этим они не могут переходить в другие таутомерные формы. Важнейшими их представителями являются сахароза и трегалоза.

трегалоза сахароза

Молекула трегалозы состоит из двух остатков α-D-глюкопи-ранозы, молекула сахарозы – из остатка α-D-глюкопиранозы и остатка β-D-фруктофуранозы. Так как у дисахаридов этой группы связь между моносахаридами осуществляется за счёт обоих полуацетальных гидроксилов, они не могут таутомерно переходить в оксикарбонильную форму, следовательно, не могут давать реакции на карбонильную группу, в т.ч. и на альдегидную группу (не дают реакцию серебряного зеркала, не реагируют с раствором Фелинга). Такие дисахариды не способны проявлять восстанавливающие свойства, в связи с этим их называют невосстанавливающими дисахаридами. Οʜᴎ проявляют свойства многоатомных спиртов (растворяют гидроксид меди, вступают в реакции алкилирования и ацилирования), как всœе сложные углеводы гидролизуются в присутствии минœеральных кислот или под действием ферментов.

Строение и свойства сахарозы. Сахароза (свекловичный са­хар) – один из наиболее давно известных человеку пищевых продуктов. Первоначально сахароза была выделœена из сахарного тростника, а затем – из сахарной свеклы. Сахароза содержится и во многих других растениях (кукуруза, клён, пальма и др.).

Молекулярный состав сахарозы С 12 Н 22 О 11 .

Молекула сахарозы состоит из двух моносахаридов: глюкозы в α-D-пиранозной форме и фруктозы в β-D-фуранозной форме, свя­занных между собой 1-2-гликозидной связью с участием двух полуацетальных (гликозидных) гидроксилов. В молекуле сахарозы нет свободных полуацетальных гидроксилов, в связи с этим она не может таутомерно переходить в гидроксикарбонильную форму.

При нагревании выше 160°С сахароза частично разлагается, выделяя воду и превращаясь в бурую массу – карамель.

Водный раствор сахарозы растворяет гидроксид меди, образуя раствор сахарата меди, проявляет при этом свойства многоатомных спиртов. При нагревании раствора сахарозы в присутствии минœеральных кислот сахароза гидролизуется, в результате образуется смесь глюкозы и фруктозы в равных количествах (искусственный мёд). Процесс гидролиза сахарозы принято называть инверсией, так как при этом наблюдается изменение правого вращения раствора на левое.

Сахароза широко используется как пищевой продукт, в произ­водстве кондитерских, хлебобулочных изделий, варенья, компотов, джемов и др.
Размещено на реф.рф
В фармакологии используется для приготовления сиропов, микстур, порошков и т.п.

Эфиры сахарозы и высших жирных кислот обладают высокой моющей способностью и используются как промышленные детергенты. Эти продукты не имеют запаха, совершенно неядовиты и полностью разрушаются бактериями при биологической самоочистке воды.

Диэфиры высших жирных кислот и сахарозы используются как эмульгаторы при получении маргарина, лекарственных препаратов и в косметике.

Октаметилсахароза применяется в промышленности пластмасс как пластификатор.

Октаацетат сахарозы используется в качестве промежуточного слоя при получении стекла триплекс.

Отходы сахарного производства (патока) употребляются для производства этилового спирта и в кондитерской промышленности.

Дисахариды - понятие и виды. Классификация и особенности категории "Дисахариды" 2017, 2018.

  • - Моносахариды Дисахариды Полисахариды

    Многообразие углеводов Глюкоза Сахароза Крахмал Фруктоза Лактоза Гликоген Галактоза Мальтоза Хитин Дезоксирибоза Целлюлоза (клетчатка) Рибоза Моносахариды – это простые сахара. Из них наиболее важны глюкоза,... .


  • - Дисахариды. Отдельные представители

    Олигосахариды. Строение, физико-химические свойства отдельных представителей Олигосахариды представляют собой углеводы, построенные из небольшого (от 2 до 10) количества моносахаридов. Олигосахариды делят на ди-, три-, тетрасахариды и т.д. по числу остатков... .