Химические модели объектов природы.

Разработка интерактивных моделей микромира и методика их использования при изучении школьного курса химии

1.4.1 Химические модели

Кроме наблюдения и эксперимента в познании естественного мира и химии большую роль играет моделирование. Одна из главных целей наблюдения - поиск закономерностей в результатах экспериментов. Однако некоторые наблюдения неудобно или невозможно проводить непосредственно в природе. Естественную среду воссоздают в лабораторных условиях с помощью особых приборов, установок, предметов, т.е., моделей. В моделях копируются только самые важные признаки и свойства объекта и опускаются несущественные для изучения. Так в химии модели условно можно разделить на две группы: материальные и знаковые.

Материальные модели атомов, молекул, кристаллов, химических производств химики используют для большей наглядности.

Наиболее распространенным изображением атома является модель, напоминающая строение Солнечной системы.

Для моделирования молекул веществ часто используют шаростержневые модели. Модели этого типа собирают из цветных шариков, обозначающих входящие в состав молекулы атомы. Шарики содиняют стержнями, символизирующие химические связи. С помощью шаростержневых моделей довольно точно воспроизводятся валентные углы в молекуле, но межъядерные расстояния отражаются лишь приблизительно, поскольку длины стержней, соединяющих шарики, не пропорциональны длинам связей.

Модели Дрединга достаточно точно передают валентные углы и соотношение длин связей в молекулах. Ядра атомов в них, в отличие от шаростержневых моделей, обозначаются не шариками, а точками соединения стержней.

Полусферические модели, называемые также моделями Стюарта - Бриглеба, собирают из шаров со срезанными сегментами. Модели атомов соединяют между собой плоскостями срезов с помощью кнопок. Полусферические модели точно передают как соотношение длин связей и валентных углов, так и заполненность межъядерного пространства в молекулах. Однако эта заполненность не всегда позволяет получить наглядное представление о взаимном расположении ядер.

Модели кристаллов напоминают шаростержневые модели молекул, однако изображают не отдельные молекулы вещества, а показывают взаимное расположение частиц вещества в кристаллическом состоянии.

Однако чаще химики пользуются не материальными, а знаковыми моделями - это химические символы, химические формулы, уравнения химических реакций. С помощью символов химических элементов и индексов записываются формулы веществ. Индекс показывает, сколько атомов данного элемента входит в состав молекулы вещества. Он записывается справа от знака химического элемента.

Химическая формула - основная знаковая модель в химии. Она показывает: конкретное вещество; одну частицу этого вещества; качественный состав вещества, т.е., атомы каких элементов входят в состав данного вещества; количественный состав, т.е., сколько атомов каждого элемента входит в состав молекулы вещества.

Все вышеприведенные модели широко используются при создании интерактивных компьютерных моделей.

Выбор реактора для проведения реакции окисления сернистого ангидрида в серный ангидрид

Центральным аппаратом в любой химико-технологической системе, включающей целый ряд машин и аппаратов, соединенных между собой различными связями, является химический реактор - аппарат, в котором протекает химический процесс. Выбор типа...

Вначале создается компьютерная модель объекта, а также применяется компьютерное моделирование для формирования молекул на месте проведения исследования. Модель может быть как двухмерной, так и трехмерной...

Инновационный путь развития технологии создания новых лекарственных средств

В разумности модели молекулы, используемой для квантово-химических построений, согласно которой анализу подлежит система ядер и электронов и ее поведение описывается уравнениями квантовой теории, сомнений нет...

Инновационный путь развития технологии создания новых лекарственных средств

Для методов определения биологической активности вводится понятие о дескрипторах и QSAR. Молекулярный дескриптор - это числовые значения, характеризующие свойства молекул. Например, они могут представлять физико-химические свойства...

Исследование кинетики реакции алкилирования изобутана изобутиленом до изооктана методом математического моделирования

Исследование кинетики реакции хлорирования бензола

R = k*C1*Ck? Для наилучшей обработки полученной модели проведем преобразование вида функции, т. к. зависимость скорости реакции от времени постоянна и для первых 3 опытов равна 0,0056...

Метод моделирования в химии

В настоящее время можно найти множество различных определений понятий «модель» и «моделирование». Рассмотрим некоторые из них. «Под моделью понимают отображение фактов, вещей и отношений определенной области знаний в виде более простой...

Научные основы реологии

Напряженно-деформированное состояние тела в общем случае является трехмерным и описать его свойства с использованием простых моделей нереально. Однако в тех редких случаях, когда деформируются одноосные тела...

Синтез и анализ ХТС в производстве бензина

Химическая модель процесса каталитического крекинга имеет очень сложный вид. Рассмотрим наиболее простую из реакций протекающих вс процессе крекинга: СnН2n+2 > CmH2m+2 + CpH2p...

Синтез химико-технологической системы (ХТС)

Производственные процессы разнообразны по своим особенностям и степени сложности. Если процесс сложный и расшифровка его механизма требует большой затраты сил и времени, используют эмпирический подход. Математические модели...

Сравнение реакторов идеального вытеснения и полного смешения в изотермическом режиме работы

О.С.ГАБРИЕЛЯН,
И.Г.ОСТРОУМОВ,
А.К.АХЛЕБИНИН

СТАРТ В ХИМИЮ

7 класс

Продолжение. Начало см. в № 1, 2/2006

Глава 1.
Химия в центре естествознания

(продолжение)

§ 3. Моделирование

Кроме наблюдения и эксперимента в познании естественного мира и химии большую роль играет моделирование.

Мы уже говорили о том, что одна из главных целей наблюдения – поиск закономерностей в результатах экспериментов.

Однако некоторые наблюдения неудобно или невозможно проводить непосредственно в природе. Естественную среду воссоздают в лабораторных условиях с помощью особых приборов, установок, предметов, т.е. моделей. В моделях копируются только самые важные признаки и свойства объекта и опускаются несущественные для изучения. Слово «модель» имеет франко-итальянские корни и переводится на русский как «образец». Моделирование – это изучение некоторого явления с помощью его моделей, т.е. заменителей, аналогов.

Например, для того чтобы изучить молнию (природное явление), ученым не нужно было дожидаться непогоды. Молнию можно смоделировать на уроке физики и в школьной лаборатории. Двум металлическим шарикам нужно сообщить противоположные электрические заряды – положительный и отрицательный. При сближении шариков до определенного расстояния между ними проскакивает искра – это и есть молния в миниатюре. Чем больше заряд на шариках, тем раньше при сближении проскакивает искра, тем длиннее искусственная молния. Такую молнию получают с помощью специального прибора, который называется электрофорной машиной.

Изучение модели позволило ученым определить, что природная молния – это гигантский электрический разряд между двумя грозовыми облаками или между облаками и землей. Однако настоящий ученый стремится найти практическое применение каждому изучаемому явлению. Чем мощнее электрическая молния, тем выше ее температура. А ведь превращение электрической энергии в теплоту можно «укротить» и использовать, например, для сварки и резки металлов. Так родился знакомый сегодня каждому процесс электросварки.

Каждая естественная наука использует свои модели, которые помогают зримо представить себе реальное природное явление или объект.

Самая известная географическая модель – глобус. Это миниатюрное объемное изображение нашей планеты, с помощью которой вы можете изучать расположение материков и океанов, стран и континентов, гор и морей. Если же изображение земной поверхности нанести на лист бумаги, то такая модель называется картой.

Моделирование в физике используется особенно широко. На уроках по этому предмету вы будете знакомиться с самыми разными моделями, которые помогут вам изучить электрические и магнитные явления, закономерности движения тел, оптические явления.

При изучении биологии модели также широко используются. Достаточно упомянуть, например, модели – муляжи цветка, органов человека и т.д.

Не менее важно моделирование и в химии. Условно химические модели можно разделить на две группы: материальные и знаковые (или символьные).

Материальные модели атомов, молекул, кристаллов, химических производств химики используют для большей наглядности.

Вы, наверное, видели изображение модели атома, напоминающее строение Солнечной системы (рис. 30).

Для моделирования молекул химических веществ используют шаростержневые или объемные модели. Их собирают из шариков, символизирующих отдельные атомы. Различие состоит в том, в шаростержневых моделях шарики-атомы расположены друг от друга на некотором расстоянии и скреплены друг с другом стерженьками. Например, шаростержневая и объемная модели молекул воды показаны на рис. 31.

Модели кристаллов напоминают шаростержневые модели молекул, однако изображают не отдельные молекулы вещества, а показывают взаимное расположение частиц вещества в кристаллическом состоянии (рис. 32).

Однако чаще всего химики пользуются не материальными, а знаковыми моделями – это химические символы, химические формулы, уравнения химических реакций.

Разговаривать на химическом языке, языке знаков и формул, вы начнете уже со следующего урока.

1. Что такое модель и что – моделирование?

2. Приведите примеры: а) географических моделей; б) физических моделей; в) биологических моделей.

3. Какие модели используют в химии?

4. Изготовьте из пластилина шаростержневые и объемные модели молекул воды. Какую форму имеют эти молекулы?

5. Запишите формулу цветка крестоцветных, если вы изучали это семейство растений на уроках биологии. Можно ли назвать эту формулу моделью?

6. Запишите уравнение для расчета скорости движения тела, если известны путь и время, за которое он пройден телом. Можно ли назвать это уравнение моделью?

§ 4. Химические знаки и формулы

К символьным моделям в химии относят знаки или символы химических элементов, формулы веществ и уравнения химических реакций, которые лежат в основе «химической письменности». Ее основоположником является шведский химик Йенс Якоб Берцелиус. Письменность Берцелиуса строится на важнейшем из химических понятий – «химический элемент». Химическим элементом называют вид одинаковых атомов.

Берцелиус предложил обозначать химические элементы первой буквой их латинских названий. Так символом кислорода стала первая буква его латинского названия: кислород – О (читается «о», т.к. латинское название этого элемента oxygenium ). Соответственно водород получил символ H (читается «аш», т.к. латинское название этого элемента hydrogenium ), углерод – С (читается «цэ», т.к. латинское название этого элемента carboneum ). Однако латинские названия хрома (chromium ), хлора (chlorum ) и меди (cuprum ) так же, как и углерода, начинаются на «С». Как же быть? Берцелиус предложил гениальное решение: такие символы записывать первой и одной из последующих букв, чаще всего второй. Так, хром обозначается Сr (читается «хром»), хлор – Cl (читается «хлор»), медь – Cu (читается «купрум»).

Русские и латинские названия, знаки 20 химических элементов и их произношения приведены в табл. 2.

В нашей таблице уместилось всего 20 элементов. Чтобы увидеть все 110 элементов, известных на сегодняшний день, нужно посмотреть в таблицу химических элементов Д.И.Менделеева.

Таблица 2

Названия и символы некоторых химических элементов

Русское название Химический знак Произношение Латинское название
Азот N Эн Nytrogenium
Алюминий Al Алюминий Aluminium
Водород Н Аш Hydrogenium
Железо Fe Феррум Ferrum
Золото Au Аурум Aurum
Kалий K Kалий Kalium
Kальций Ca Kальций Calcium
Kислород О О Oxigenium
Магний Mg Магний Magnium
Медь Cu Kупрум Cuprum
Натрий Na Натрий Natrium
Ртуть Hg Гидраргирум Hydrargirum
Свинец Pb Плюмбум Plumbum
Сера S Эс Sulphur
Серебро Ag Аргентум Argentum
Углерод С Цэ Carboneum
Фосфор Р Пэ Phosporus
Хлор Cl Хлор Chlorum
Хром Cr Хром Chromium
Цинк Zn Цинк Zincum

Чаще всего в состав веществ входят атомы нескольких химических элементов. Изобразить мельчайшую частицу вещества, например молекулу, можно с помощью моделей-шариков так, как вы это делали на предыдущем уроке. На рис. 33 изображены объемные модели молекул воды (а) , сернистого газа (б) , метана (в) и углекислого газа (г) .

Чаще для обозначения веществ химики пользуются не материальными моделями, а знаковыми. С помощью символов химических элементов и индексов записываются формулы веществ. Индекс показывает, сколько атомов данного элемента входит в состав молекулы вещества. Он записывается внизу справа от знака химического элемента. Например, формулы упомянутых выше веществ записывают так: Н 2 О, SO 2 , CH 4 , CO 2 .

Химическая формула – основная знаковая модель в нашей науке. Она несет очень важную для химика информацию. Химическая формула показывает: конкретное вещество; одну частицу этого вещества, например одну молекулу; качественный состав вещества, т.е. атомы каких элементов входят в состав данного вещества; количественный состав , т.е. сколько атомов каждого элемента входит в состав молекулы вещества.

По формуле вещества можно определить также, простое оно или сложное.

Простыми веществами называют вещества, состоящие из атомов одного элемента. Сложные вещества образованы атомами двух или более различных элементов.

Например, водород Н 2 , железо Fe, кислород О 2 – простые вещества, а вода Н 2 О, углекислый газ СО 2 и серная кислота H 2 SO 4 – сложные.

1. Знаки каких химических элементов содержат заглавную букву С? Запишите их и произнесите.

2. Из табл. 2 выпишите отдельно знаки элементов-металлов и элементов-неметаллов. Произнесите их названия.

3. Что такое химическая формула? Запишите формулы следующих веществ:

а) серной кислоты, если известно, что в состав ее молекулы входят два атома водорода, один атом серы и четыре атома кислорода;

б) сероводорода, молекула которого состоит из двух атомов водорода и одного атома серы;

в) сернистого газа, молекула которого содержит один атом серы и два атома кислорода.

4. Что объединяет все эти вещества?

Изготовьте из пластилина объемные модели молекул следующих веществ:

а) аммиака, молекула которого содержит один атом азота и три атома водорода;

б) хлороводорода, молекула которого состоит из одного атома водорода и одного атома хлора;

в) хлора, молекула которого состоит из двух атомов хлора.

Напишите формулы этих веществ и прочитайте их.

5. Приведите примеры превращений, когда известковая вода является определяемым веществом, а когда – реактивом.

6. Проведите домашний эксперимент по определению крахмала в продуктах питания. Какой реактив вы использовали при этом?

7. На рис. 33 изображены модели молекул четырех химических веществ. Сколько химических элементов образуют эти вещества? Запишите их символы и произнесите их названия.

8. Возьмите пластилин четырех цветов. Скатайте самые маленькие шарики белого цвета – это модели атомов водорода, синие шарики побольше – модели атомов кислорода, черные шарики – модели атомов углерода и, наконец, самые большие шарики желтого цвета – модели атомов серы. (Конечно, цвет атомов мы выбрали условно, для наглядности.) С помощью шариков-атомов изготовьте объемные модели молекул, показанных на рис. 33.

1

Федоров А.Я. 1 Мелентьева Т.А. 2 Мелентьева М.А. 3

1 Тульский институт управления и бизнеса им. Н.Д. Демидова

2 Тульский педагогический университет им. Л.Н. Толстого

3 Российская музыкальная академия им. Гнессиных

1. Ивашов П.В. Ландшафтно-геохимические исследования на базальтовых массивах. – М.: Из-во «Дальнаука», 2003. – 323 с.

2. Акимова Т.А., Кузьмин А.П., Хаскин В.В. Экология. – М.: Из-во «ЮНИТИ», 2001. – 343 с.

4. Экология; под ред. Терехиной Л.А. – Тула: Из-во «ТГПУ», 2004. – 221 с.

5. Федоров А.Я., Мелентьева Т.А., Мелентьева М.А. Процесс очистки технологического газа. – Тула: Из-во «ТулГУ» Серия «Экология и безопасность жизнедеятельности», 2009. – Вып. 3. – С. 47–52.

6. Федоров А.Я., Мелентьева Т.А., Мелентьева М.А. Моделирование металлургических процессов. – М.: Из-во «Академия Естествознания», 2011. – С. 56–58.

Из всех изверженных из земных недр пород наиболее широко распространены базальты - эффузионные образования, связанные с базальтовым магматизмом. Семейство базальтов петрологами обычно подразделяются на два больших типа: толеиновые базальты и щелочные оливиновые базальты. Толеиновые базальты состоят из двух пироксенов (авгита и бедного кальцием собственно пироксена) и плагиоклаза. В них также может присутствовать оливин. Щелочные оливиновые базальты отличаются наличием только одного пироксена (авгивита) в парагенезисе с плагиоклазом и оливином. Они особенно характерны для океанических островов. Толеинтовые базальты главным образом встречаются в глубоководных частях океанов, вдоль океанических хребтов, а также в форме покровных базальтов на материке. Континентальные телеиты имеют несколько более высокое содержание кальция и кремнезема по сравнению с океаническими телеитами.

В регионах распространение древней и современной вулканической деятельности в настоящее время доказана тесная и пространственная связь базальтов и андезитов как эффузионных образований с их интрузивными аналогами в виде габброидов и диоритов. Общность химических составов этих вулканических пород и интрузивных пород указывает на единство их глубинного происхождения .

Многие металлургические процессы основаны на переработке железосодержащих пород. Они основаны на восстановлении металлов из руд, где они содержатся преимущественно в виде окислов или сульфидов с помощью термических и электролитических реакций. Наиболее характерные химические реакции имеют вид:

Fe2O3 + 3C +O2 → 2Fe + CO + 2CO2,

5Сu2S + 5O2 → 10Cu + 5SO2, (1)

Al2O3 + 3O → 2Al + 3О2,

где Fe2O3, Al2O3 - оксиды железа и алюминия; Сu2S - сульфид меди; C - углерод; O2 - молекулярный кислород; O - атомарный кислород;Fe, Cu, Al - получаемые металлы; CO - оксид углерода; CO2 - диоксид углерода; SO2 - диоксид серы. Технологическая цепь в черной металлургии включает производство окатышей и агломератов, доменное, сталеплавильное, прокатное, ферросплавное, литейное производство и другие вспомогательные производства . Все металлургические переделы сопровождаются интенсивным загрязнением среды (таблица). В коксохимическом производстве дополнительно выделяются ароматические углеводороды, фенолы, аммиак, цианиды и целый ряд других веществ. Черная металлургия потребляет большое количество воды. Хотя промышленные нужды на 80-90 % удовлетворяются за счет систем оборотного водоснабжения., забор свежей воды и сброс загрязненных стоков достигают очень больших объемов, соответственно порядка 25-30 м3 и 10-15 м3 на 1 т продукции полного цикла. Со стоками в водные объекты поступают значительные количества взвешенных веществ, сульфатов, хлоридов, соединений тяжелых металлов.

Газовые выбросы основных переделов черной металлургии в кг/т соответствующего продукта

Примечание. * кг/м2 поверхности металла.

Технологии химической промышленности со всеми ее отраслями (неорганическая химия, нефтегазохимия, лесохимия, оргсинтез, фармакологическая химия, микробиологическая промышленность и др.) содержат множество незамкнутых материальных циклов. Основными источниками вредных эмиссий являются процессы производства неорганических кислот и щелочей, синтетического каучука, минеральных удобрений, ядохимикатов, пластмасс, красителей, растворителей, моющих средств, крекинг нефти. Кроме того, являются процессы очистки технологического газа . В техногенных потоках поллютантов ключевое место занимают транспортирующие среды - воздух и вода.

Обычно химический процесс получения металлов заключается в восстановлении данного металла - обычно окисла или сульфида - до свободного металла. В качестве восстановителя обычно применяют уголь, чаще всего в виде кокса (КМЗ, РМЗ) .

Россия занимает невыгодное географическое положение по отношению к трансграничному переносу аэрополлютантов. В связи с преобладанием западных ветров значительную долю загрязнения воздушного бассейна Европейской территории России (ЕТР) дает аэрогенный перенос из стран Западной и Центральной Европы и ближнего зарубежья.

Для интегральной оценки состояния воздушного бассейна применяют индекс суммарного загрязнения атмосферы:

где qi - средняя за год концентрация в воздухе i-го вещества; Ai - коэффициент опасности i-го вещества, обратный ПДК этого вещества; Ci - коэффициент, зависящий от класса опасности вещества. Im является упрощенным показателем и рассчитывается обычно для m = 5 - наиболее значимых концентраций веществ, определяющих загрязнение воздуха. В эту пятерку чаще других попадают такие вещества как бензопирен, формальдегид, фенол, аммиак, диоксид азота, сероуглерод, пыль. Индекс Im изменяется от долей единицы до 15-20 - чрезвычайных условий загрязнения.

По ряду показателей, в первую очередь по массе и распространенности вредных эффектов, атмосферным загрязнителем номер один является диоксид серы. Поступление в атмосферу больших количеств SO2 и окислов азота приводит к заметному снижению PH атмосферных осадков. Это происходит из-за вторичных реакций в атмосфере, приводящих к образованию сильных кислот. В этих реакциях участвует кислород и пары воды, а также частицы техногенной пыли в качестве катализатора:

2SO2 + O2 + 2H2O → 2H2SO4,

4NO2 + 2H2O + O2 → 4HNO3, (3)

где H2SO4, HNO3 - серная и азотная кислоты. В атмосфере оказывается и ряд промежуточных продуктов указанных реакций. Растворение кислот в атмосферной влаге приводит к выпадению кислотных дождей. В промышленных районах и в зонах атмосферного заноса окислов серы и азота pH дождевой воды колеблется от 3 до 5. Кислотные осадки особенно опасны в районах с кислыми почвами и низкой буферностью природных вод. Это приводит к неблагоприятным изменениям в водных экосистемах. Природные комплексы Южной Канады и Серной Европы уже давно ощущают действие кислых осадков.

В 70-х годах появились сообщения о региональных снижениях озона в стратосфере. Особенно заметной стала сезонно пульсирующая озоновая дыра над Антарктидой площадью более 10 млн км2, где содержание O3 за 80-е годы уменьшилось почти на 50 %. Поскольку ослабление озонового экрана чрезвычайно опасно для всей наземной биоты и для здоровья людей, эти данные привлекли внимание ученых, а затем всего общества. Большинство специалистов склоняется к мнению о техногенном происхождении озоновых дыр. Наиболее обосновано предположение, согласно которому главной причиной является попадание в верхние слои атмосферы техногенного хлора и фтора, а также других атомов и радикалов, способных чрезвычайно активно присоединять атомарный кислород, тем самым конкурируя с реакцией:

О + О2 → O3, (4)

где O3 - озон. Занос активных галогенов в верхние слои атмосферы опосредован летучими хлорфторуглеродами (ХФУ) типа фреонов, которые, будучи в обычных условиях инертными и нетоксичными, под действием коротковолновых ультрафиолетовых лучей в стратосфере распадаются. Хлорфторуглероды обладают рядом полезных свойств, обусловивших широкое их применение в холодильных установках, кондиционерах, аэрозольных баллончиках, огнетушителях и др. (рисунок). С 1950 г. объем мирового производства ХФУ ежегодно возрастал на 7-10 %.

Мировое производство хлорфторуглеродов

В последующем были приняты международные соглашения, обязывающие стран - участниц сократить использование ХФУ. США еще в 1978 г. ввели запрет на использование ХФУ - аэрозолей. Но расширение других областей применения ХФУ снова привел к росту их мирового производства. Переход промышленности к новым озоносберегающим технологиям связан с большими финансовыми затратами. В последние десятилетия появились и другие, чисто технические пути заноса активных разрушителей озона в стратосферу: ядерные взрывы в атмосфере, выбросы сверхзвуковых самолетов, запуски ракет и космических кораблей многоразового использования. Не исключено, однако, что часть наблюдаемого ослабления озонового экрана Земли связана не с техногенными выбросами, а с вековыми колебаниями аэрохимических свойств атмосферы и независимыми изменениями климата.

Библиографическая ссылка

Федоров А.Я., Мелентьева Т.А., Мелентьева М.А. ХИМИЧЕСКАЯ МОДЕЛЬ ЗАГРЯЗНЕНИЯ ЗЕМЛИ // Современные наукоемкие технологии. – 2013. – № 2. – С. 107-109;
URL: http://top-technologies.ru/ru/article/view?id=31345 (дата обращения: 06.04.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Структура связей технологической системы.

Последовательность прохождения потоков через элементы ТС определя­ет структуру связей и обеспечивает необходимые условия работы элементов системы.

При всей сложности ТС существуют типовые соединения операторов меж­ду собой, объединяющие их в единую схему. К ним относятся:

Последовательное соединение;

Ветвление;

Объединение.

Последовательная связь (рис. 14) является основным соединением техно­логических операторов между собой.

Рис. 14. Последовательное соединение

При этом соединении весь технологический поток, выходящий из преды­дущего элемента ТС, полностью поступает на последующий элемент ТС, при­чем каждый элемент поток проходит только один раз.

Применение: последовательная переработка сырья в разных операциях, более полная переработка сырья последовательными воздействиями на него, управление процессом путем необходимого управляющего воздействия на каж­дый элемент.

Разветвленная связь (рис. 15) После некоторой операции поток разветв­ляется, и далее отдельные потоки перерабатываются различными способами. Используется для получения разных продуктов.

Объединение (рис. 16): потоки смешиваются и поступают в реактор, где происходит их обработка.

Существует также разновидность сложных соединений, объединяющих несколько типов элементарных соединений одновременно - параллельное, последовательно-обводное (байпасное) и рециркуляционное соединения.

При параллельном соединении (рис. 17) технологический поток разделя­ется на несколько потоков, которые поступают на различные элементы ТС, причем каждый аппарат поток проходит только один раз.

Применение параллельного соединения:

1).Если мощность некоторых аппаратов ограничена, то устанавливают несколь­ко аппаратов параллельно, обеспечивая суммарную производительность всей системы.

2).Использование периодических стадий в непрерывном процессе.

В этом случае поочередно работает один из параллельных аппаратов. По­сле завершения рабочего цикла одного аппарата поток переключают на дру­гой аппарат, а отключенный подготавливают к очередному рабочему циклу.

Так включены адсорберы с коротким сроком службы сорбента. Пока в одном из них происходит поглощение, в другом сорбент регенерируют.

3).Резервирование на случай выхода га строя одного из аппаратов, когда такое нарушение может привести к резкому ухудшению работы всей системы и даже к аварийному состоянию.

Такое резервирование называют «холодным», в отличие от резервирова­ния, обусловленного периодичностью процесса - «горячего».

При последовательно-обводном (байпасном) соединении (рис. 18) через ряд последовательно соединенных элементов ТС проходит только часть по­тока, а другая часть обходит часть аппаратов, а затем соединяется с частью потока, прошедшего через элементы ТС.

Различают простой (рис. 18) и сложный (рис. 19) байпасы.

Рис. 18. Последовательно-обводное (байпасное) соединение

Рис. 19. Сложное последовательно-обводное (байпасное) соединение

Байпас используется в основном для управления процессом. Например, в процессе эксплуатации теплообменника условия передачи теплоты в нем ме­няются (загрязнения поверхности, изменение нагрузки). Поддерживают необ­ходимые температуры потоков байпасированием их мимо теплообменника.

Величину байпаса β определяют как долю основного потока, проходящего мимо аппарата (обозначения потоков показаны на рис. 18):

β= V b /V 0 .

Рециркуляционное соединение (рис. 20) характеризуется наличием обрат­ного технологического потока в системе последовательно соединенных эле­ментов, который связывает выход одного из последующих элементов с входом одного из предыдущих элементов.

Рис. 20. Рециркуляционное соединение

Через аппарат, в который направляется поток V p , проходит поток V боль­ший, чем основной, так что:

V = V P + V 0 .

Количественно величину рецикла характеризуют двумя величинами:

1. Кратностью циркуляции К р = V/Vо,

2. Отношением циркуляции R = V p /V.

Следовательно, величина К р и R связаны между собой:

Если выходящий из аппарата поток разветвляется и одна его часть об­разует обратную связь (рис. 20), то такая связь образует полный рецикл составы выходящего потока и рециклирующего одинаковы.

Такую схему используют для управления процессом, создания благопри­ятных условий для его протекания. В цепных реакциях скорость превраще­ния возрастает по мере накопления промежуточных активных радикалов. Если на вход реактора вернуть часть выходного потока, содержащего актив­ные радикалы, то превращение будет интенсивным с самого начала.

В случае разделения потоков на фракции возможен возврат (рецикл) ча­сти компонентов после системы разделения (на рис. 22 элемент разделения обозначен символом Р). Это - фракционный рецикл (возвращается фракция потока). Широко применяется для более полного использования сырья.

Рис. 22.Фракционное рециркуляционное соединение (по компоненту)

К фракционному рециклу можно отнести рисунок 23. Свежая смесь на­гревается в теплообменнике теплом выходящего из реактора потока. Рециркулирует тепловая фракция потока (а не компонентная, как на рис. 23).

Вывод

Рассмотрены все типы связей элементов ТС.

Они присутствуют практически во всех ТС, обеспечивая необходимые условия их функционирования.

Рис. 23. Фракционное рециркуляционное соединение (по теплу)

Следует учесть, что при синтезе и оптимизации ТС обычно требуется рассматривать достаточно большое количество вариантов схем, отличающих­ся технологической топологией. Сократить это количество, а следовательно, сэкономить время и деньги помогает наряду с интуицией разработчика его умение предварительно оценить эффект, которого возможно ожидать при различных видах соединений между элементами ТС.


Методы описания ТС. Химическая модель.

Различают описательные и графические виды моделей ТС.

К описательным относят: химическую, операциональную, математическую.

К графическим относят: функциональную, технологическую, структурную, специальную.

Химическая модель

Химическая модель (схема) представлена основными реакциями (химиче-скими уравнениями), которые обеспечивают переработку сырья в продукт.

Например, синтез аммиака из водорода и азота можно записать такой формулой

А производство аммиака из природного газа - системой уравнений:

Последовательность химических взаимодействий удобно представить и такой схемой, как, например, производстве соды Na 2 СО 3 из поваренной соли NaCl и известняка СаСО3: