Круговорот веществ в природе. Биологический и геологический круговороты

Cтраница 1


Биологический круговорот связан с метаболизмом (обменом веществ) и образованием, а также разложением воды в живом веществе, в процессе его жизнедеятельности.  

Любой биологический круговорот характеризуется многократным включением атомов химических элементов в тела живых организмов и выходом их в окружающую среду, откуда они вновь захватываются растениями и вовлекаются в круговорот. Малый биологический круговорот характеризуется емкостью - количеством химических элементов, находящихся одновременно в составе живого вещества в данной экосистеме, и скоростью - количеством живого вещества, образующегося и разлагающегося в единицу времени.  

Биологический круговорот суши и гидросферы объединяют круговороты отдельных ландшафтов посредством водного стока и атмосферных перемещений. Особенно важна роль циркуляции воды и атмосферы в объединении всех материков и океанов в единый круговорот биосферы.  

Биологическому круговороту веществ присуща созидательная функция, создание органического вещества и обогащение почвы питательными элементами. От него зависит жизнь в любых растительных сообществах: садах, лугах, полях, лесах. В последние годы возникла необходимость создания высокоинтенсивных типов круговорота в замкнутых системах, которые могли бы обеспечить жизнедеятельность в далеких межпланетных путешествиях.  

Интенсивность биологического круговорота в первую очередь определяется температурой окружающей среды и количеством воды. Так, например, биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре.  

Скорость биологических круговоротов на суше составляет годы и десятки лет, в водных экосистемах - несколько дней или недель.  

Для биологического круговорота в лесу характерно длительное выключение из него азота и зольных элементов, заключенных в многолетней биомассе деревьев и кустарников, трансформация опада на поверхности почвы с образованием лесной подстилки и разнообразных по составу водорастворимых органических и минеральных продуктов его разложения.  

Скорость биологических круговоротов и общее количество вовлекаемого в эти циклы вещества определяются масштабами и экологическими условиями в экосистемах. Для экосистем характерны различные экологические условия, под которыми подразумеваются экологические факторы внешней среды, прямо или косвенно воздействующие на живые организмы. Эти факторы могут быть абиотическими и биотическими.  


Часть биологического круговорота, состоящая из круговоротов углерода, воды, азота, фосфора, серы и других биогенных веществ, называют биогеохимическим круговоротом.  

В биологическом круговороте веществ особое место принадлежит азоту. При разложении органических веществ азот уходит в атмосферу либо в виде газообразных соединений, либо в свободном состоянии. Возвращение азота в почву, откуда его черпают растения, осуществляется сложным путем, в результате процесса, в котором участвуют специальные бактерии и некоторые другие организмы, связывающие газообразный азот атмосферы в соединения, доступные для потребления растениями.  


В понятие биологический круговорот В. А. Ковда включает сумму циклических процессов обмена веществ и энергии между средой и совокупностью растительных и животных организмов. Если проследить за цепочкой последовательных превращений и миграцией отдельных элементов, участвующих в обмене между средой обитания, в частности почвой, и биотой, то можно обнаружить, например с помощью изотопной метки, что полный трансформационно-миграционный цикл элемента во всех почвах и на всех этапах ее функционирования включает как биологические, так и абиотические процессы трансформации и перемещения вещества. Например, в период между возвратом элемента на поверхность почвы с лесным опадом и его последующим поглощением корнями растений он может мигрировать по почвенному профилю. При этом интенсивность, направленность данного процесса будет определяться не только биотой, но и климатическими факторами, водно-физическими, сорбционными и другими свойствами почв.  

Включаясь в биологический круговорот, они через растительную и животную пищу попадают в организм человека и, накапливаясь в нем, вызывают радиоактивное облучение.  

Напротив, биологический круговорот вещества проходит в границах обитаемой биосферы и воплощает в себе уникальные свойства живого вещества планеты. Будучи частью большого, малый круговорот осуществляется на уровне биогеоценоза, он заключается в том, что питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тела и жизненные процессы как их самих, так и организмов - консументов. Продукты разложения органического вещества почвенной микрофлорой и мезофауной (бактерии, грибы, моллюски, черви, насекомые, простейшие и др.) вновь разлагаются до минеральных компонентов, опять-таки доступных растениям и поэтому вновь вовлекаемых ими в поток вещества.  

12.1. Понятие о биологическом круговороте

Биологический круговорот – это возникший одновременно с появлением жизни на Земле круговорот химических элементов и веществ, осуществляемый жизнедеятельностью организмов. Он играет особую роль в биосфере. По этому поводу Н. В. Тимофеев-Ресовский писал: «Происходит огромный, вечный, постоянно работающий биологический круговорот в биосфере, целый ряд веществ, целый ряд форм энергии постоянно циркулируют в этом большом круговороте биосферы» (М. М. Камшилов, 1974; В. А. Вронский, 1997). В закономерностях биологического круговорота решена проблема длительного существования и развития жизни. На теле конечного объема, какова Земля, запасы доступных минеральных элементов, необходимых для осуществления функции жизни, не могут быть бесконечными. Если бы они только потреблялись, жизнь рано или поздно должна была бы прекратиться. «Единственный способ придать ограниченному количеству свойство бесконечного, – пишет В. Р. Вильямс, – заставить его вращаться по замкнутой кривой». Жизнь использовала именно этот метод. «Зеленые растения создают органическое вещество, незеленые разрушают его. Из минеральных соединений, полученных от распада органического вещества, новые зеленые растения строят новое органическое вещество и так без конца». С учетом этого, каждый вид организмов представляет собой звено в биологическом круговороте. Используя в качестве средств существования тела или продукты распада одних организмов, он должен отдавать в среду то, что могут использовать другие. Особенно велика роль микроорганизмов. Минерализуя органические остатки животных и растений, микроорганизмы превращают их в «единую валюту» – минеральные соли и простейшие органические соединения типа биогенных стимуляторов, снова используемые зелеными растениями при синтезе нового органического вещества. Один из главных парадоксов жизни заключается в том, что ее непрерывность обеспечивается процессами распада, деструкцией. Разрушаются сложные органические соединения, высвобождается энергия, теряется запас информации, свойственный сложно организованным живым телам. В результате деятельности деструкторов, преимущественно микроорганизмов, любая форма жизни неизбежно будет включаться в биологический круговорот. Поэтому с их помощью осуществляется естественная саморегуляция биосферы. Два свойства позволяют микроорганизмам играть столь важную роль: возможность сравнительно быстро приспосабливаться к различным условиям и способность использовать в качестве источника углерода и энергии самые различные субстраты. Высшие организмы не обладают такими способностями. Поэтому они могут существовать лишь в качестве своеобразной надстройки на прочном фундаменте микроорганизмов. Биологический круговорот, основанный на взаимодействии синтеза и деструкции органического вещества, – один из самых существенных форм организации жизни в планетарном масштабе. Только он обеспечивает непрерывность жизни и ее прогрессивное развитие.

В качестве звеньев биологического круговорота выступают особи и виды организмов разных систематических групп, взаимодействующие между собой непосредственно и косвенно с помощью многочисленных и многосторонних прямых и обратных связей. Биологический круговорот планеты также представляется сложной системой частных круговоротов – экологических систем, связанных между собой различными формами взаимодействия.

Биологический круговорот осуществляется в основном по трофическим (пищевым) цепям (рисунок 12.1).

При важной роли в нем растений и животных, поток биогенных элементов, как азот, фосфор, сера через популяции микроорганизмов в круговороте примерно на порядок выше, чем через популяции растений и животных. Важным показателем интенсивности биологического круговорота является скорость обращения химических элементов. В качестве показателя этой интенсивности можно использовать скорость накопления и разложения мертвого органического вещества, образующегося в результате ежегодного опада листьев и отмирания организмов.

Отношение, например, массы подстилки к той части опада, которая формирует подстилку, служит показателем скорости разложения опада и освобождения химических элементов. Чем выше этот индекс, тем меньше интенсивность биологического круговорота в данной экосистеме. Наибольшей величиной индекса (более 50) характеризуются заболоченные леса и тундра. В темнохвойных лесах индекс составляет 10–17, в широколиственных – 3–4, в степях – 1,0–1,5, в саваннах – не более 0,2. Во влажных тропических лесах растительные остатки практически не накапливаются (индекс не более 0,1). Поэтому здесь биологический круговорот наиболее интенсивный.


Циклы массообмена различной протяженности в пространстве и неодинаковой длительности во времени образуют динамическую систему биосферы. В. И. Вернадский считал, что история большинства химических элементов, образующих более 99% массы биосферы, может быть понята лишь с учетом круговых миграций (циклов). При этом он подчеркивал, что "эти циклы обратимы лишь в главной части атомов, часть же элементов неизбежно и постоянно выходит из круговорота. Этот выход закономерен, т.е. круговой процесс не является вполне обратимым". Неполная обратимость и несбалансированность миграционных циклов допускают определенные концентрации мигрирующего элемента, к которым организмы могут адаптироваться, но в то же время, обеспечивают вывод избыточного количества элемента из данного цикла.

То есть, целостность биосферы как системы обусловлена непрерывным обменом веществом между её компонентами, в котором ключевую роль играют процессы, связанные с синтезом и разложением органического вещества. Реализуются они как в ходе обмена веществ между живыми организмами и окружающей средой, так и в процессах минерализации органического вещества после смерти организма в целом или отмирания отдельных его органов. Кроме того, свой вклад в круговорот вещества в биосфере сносят и небиогенные по своей природе процессы обмена веществом между различными компонентами географической оболочки.

Абиогенный и биологический круговороты тесно переплетаются, образуя общепланетарный геохимический круговорот и систему локальных круговоротов вещества. Таким образом, за миллиарды лет биологической истории нашей планеты сложились великий биогеохимический круговорот и дифференциация химических элементов в природе, который является основой нормального функционирования биосферы. То есть в условиях развитой биосферы круговорот веществ направляется совместным действием биологических, геологических и геохимических факторов. Соотношение между ними может быть разным, но действие – обязательно совместным! Именно в этом смысле употребляются термины биогеохимический круговорот веществ и биогеохимические циклы.

Биологический круговорот не является полностью компенсированным замкнутым циклом.

Биологическое, биохимическое и геохимическое значение процессов, осуществляемых в биологическом круговороте веществ, впервые показал В. В. Докучаев. Далее оно было раскрыто в трудах В. И. Вернадского, Б. Б. Полынова, Д. Н. Прянишникова, В. Н. Сукачева, Л. Е. Родина, Н. И. Базилевич, В. А. Ковды и других исследователей.

Прежде чем мы приступим к изучению природных биологических круговоротов химических элементов, необходимо познакомиться с наиболее часто употребляемыми терминами.

Биомасса – масса живого вещества, накопленная к данному моменту времени.

Фитомасса (или биомасса растений0 – масса живых и отмерших, но сохранивших свое анатомическое строение к данному моменту организмов растительных сообществ на любой конкретной площади или на планете в целом.

Структура фитомассы - соотношение подземной и надземной частей растений, а также однолетних и многолетних, фотосинтезирующих и нефотосинтезирующих частей растений.

Ветошь – отмершие части растений, сохранившие механическую связь с растением.

Опад – количество органического вещества растений, отмерших в надземных и подземных частях на единице площади за единицу времени.

Подстилка – масса многолетних отложений растительных остатков разной степени минерализации.

Прирост – масса организма или сообщества организмов, накопленная на единице площади за единицу времени.

Истинный прирост – отношение величины прироста к величине опада за единицу времени на единице площади.

Первичная продукция – масса живого вещества, создаваемая автотрофами (зелеными растениями) на единице площакди за единицу времени.

Вторичная продукция – масса органического вещества, создаваемая гетеротрофами на единице площади за единицу времени.

Следует различать также емкость и скорость биологического круговорота.

Емкость биологического круговорота – количество химических элементов, находящихся в составе массы зрелого биоценоза (фитоценоза).

Интенсивность биологического круговорота – количество химических элементов, содержащихся в приросте биомассы на единицу площади в единицу времени.

Скорость биологического круговорота – промежуток времени, в течение которого элемент проходит путь от поглощения его живым веществом до выхода из состава живого вещества.

По Л. Е. Родину и Н. И. Базилевич (1965), полный цикл биологического круговорота элементов на суше слагается из следующих составляющих:

1. Поглощение растениями из атмосферы углерода, а из почвы – азота, зольных элементов и воды, закрепление их в телах растительных организмов, поступление в почву с отмершими растениями или их частями, разложение опада и высвобождение заключенных в них элементов.

2. Поедание частей растений питающимися ими животными, превращение их в телах животных в новые органические соединения и закрепление части из них в животных организмах, последующее поступление их в почву с экскрементами животных или с их трупами, разложение и тех и других и высвобождение заключенных в них элементов.

3. Газообмен между растениями и атмосферой (в том числе, почвенным воздухом).

4. Прижизненные выделения надземными органами растений и их корневыми системами некоторых элементов непосредственно в почву.

Структура биосферы в самом общем виде представляет собой два крупнейших природных комплекса первого ранга – континентальный и океанический. В современную эпоху суша в целом является элювиальной системой, океан – аккумулятивной системой. История "геохимических отношений" между океаном и сушей отражена в химическом составе почв и океанических вод. Элементы, являющиеся основой жизни – Si, Al, Fe, Mn, C, P, N, Ca, K – аккумулируются в почве, а H, O, Na, Cl, S, Mg – составляют химическую основу океана.

Растения, животные и почвенный покров Мировой суши образуют сложную систему. Связывая и перераспределяя солнечную энергию, углерод атмосферы, влагу, кислород, водород, азот, фосфор, серу, кальций и другие биофильные элементы, эта систама постоянно формирует новую биомассу и генерирует свободный кислород.

В океане существует вторая система (водные растения и животные), выполняющая на планете те же функции связывания солнечной энергии, углерода, азота, фосфора и других биофилов путем образования фитобиомассы, высвобождения кислорода в атмосферу.

Вам уже известно, что существует три формы накопления и перераспределения космической энергии (прежде всего, энергии Солнца) в биосфере.

Суть первой из них в том. Что живые организмы, а через пищевые цепи и связанные с ними животныхе и бактерии строят свои ткани, используя многие химические элементы и их соединения. Среди важнейших из них макроэлементы– H, O, N, P, S, Ca, K, Mg, Si, Al, Mn, а также микроэлементы I, Co, Cu, Zn, Mo и др. При этом происходит избирательная селекция легких изотопов углерода, водорода, кислорода, азота и серы от более тяжелых.

В течении всей своей жизни и даже после смерти живые организмы суши, водной и воздушной среды, находятся в состоянии непрерывного обмена с окружающей средой. При этом суммарная масса и объем продуктов прижизненного обмена организмов и среды (метаболитов) в несколько раз превышают биомассу живого вещества.

Элементами биогеохимического круговорота являются следующие составляющие:

1. Непрерывные или регулярно повторяющиеся процессы притока энергии, образование и синтез новых соединений.

2. Постоянные или периодические процессы переноса или перераспределения энергии и процессы выноса и направленного перемещения синтезированных соединений под влиянием физических, химических и биологических агентов.

3. Направленные ритмические процессы последовательного преобразования: разложения, деструкции синтезированных ранее соединений под влиянием биогенных и абиогенных воздействий среды.

4. Постоянное или периодическое образование простейших минеральных или органо-минеральных компонентов в газообразном, жидком или твердом состоянии, которые играют роль исходных компонентов для новых, очередных циклов круговорота веществ.

Биологические обусловлены жизнедеятельностью организмов (питание, пищевые связи, размножение, рост, перемещение продуктов метаболизма, смерть, разложение, минерализация)

Обязательными параметрами, учитываемыми при исследовании биогеохимических циклов являются следующие основные показатели:

1. Общая биомасса и ее фактический прирост (фито-, зоо-, микробная масса по отдельности).

2. Органический опад (количество, состав)

3. Органическое вещество почвы (гумус, неразложившиеся органические остатки).

4. Элементарный вещественный состав почв, вод, воздуха, осадков, отдельных фракций биомассы.

5. Наземные и подземные запасы биогенной энергии.

6. Прижизненные метаболиты

7. Число видов живых организмов, их численность, сост

8. Продолжительность жизни организмов каждого вида, динамика жизни популяций живых организмов и почв.

9. Эколого-метеорологическая обстановка среды: фон и оценка вмешательства человека.

10. Характеристика различных ландшафтов и их элементов.

11. Количество загрязнителей, их химические, физические, биологические свойства.

Индивидуальная значимость того или иного химического элемента оценивается коэффициентом биологического поглощения, который определяется отношением содержания элемента в золе растений (по массе) к содержанию того же элемента в почве (или в земной коре).

В 1966 году В. А. Ковда предложил использовать для характеристики средней продолжительности общего цикла углерода отношение учтенной фитобиомассы к годичному фотосинтетическому приросту фитомассы. Этот коэффициент характеризует среднюю продолжительность общего цикла синтеза-минерализации биомассы в данной местности (или на суше в целом). Расчеты показали, что доля суши в целом этот цикл укладывается в период от 300-400 до 1000 лет. Соответственно, с этой средней скоростью идет освобождение минеральных соединений, связанных в биомассе, образование и минерализация гумуса в почве.

Для общей оценки биогеохимического значения минеральных компонентов живого вещества биосферы В. А. Ковда предложил сопоставлять запас минеральных веществ биомассы, а также количество минеральных веществ, ежегодно вовлекаемых в оборот с приростом и опадом, с годовым химическим стоком рек. Оказалось, что эти величины сопоставимы. А это означает, что большая часть веществ, растворенных в речных водах, прошла через биологический круговорот системы растения-почвы, до того, как она влилась в геохимическую миграцию с водой в направлении океана или внутриматериковых впадин.

Оказалось, что индексы биогеохимического круговорота очень сильно варьируют в различных климатических условиях, под покровом различных растительных сообществ, при различных условиях естественного дренажа, поэтому Н. И. Базилевич и Л. Е. Родин предложили рассчитывать дополнительный коэффициент, характеризующий интенсивность разложения опада и длительность сохранения подстилки в условиях данного биогеоценоза, равный отношению массы подстилки к массе годичного опада. По данным этих исследователей индексы разложения фитомассы наибольшие в тундре и болотах севера, а наименьшие (около 1) – в степях и полупустынях.

Б. Б. Полынов предложил рассчитывать индекс водной миграции равный отношению количества элемента в минеральном остатке выпаренной речной или грунтовой воды к содержанию того же химического компонента в горных породах (или земной коре). Расчет индексов водной миграции показал, что наиболее подвижными мигрантами в биосфере являются хлор, сера, бор, бром, йод, кальций, натрий, магний, фтор, стронций, цинк, уран, молибден. Наименее подвижны – кремний, алюминий, железо, калий, фосфор, барий, марганец, рубидий, медь, никель, кобальт, мышьяк, литий.

Ненарушенные биогеохимические циклы имеют почти круговой, т.е. почти замкнутый характер. Степень воспроизводства (повторяемости) циклов в природе очень высока (по данным В.а. Ковды – 90-98%). Тем самым поддерживается известное постоянство состава, количества и концентрации компонентов, вовлеченных в круговорот. Но неполная замкнутость биогеохимических циклов, как мы увидим далее, имеет очень важное геохимическое значение и способствует эволюции биосферы. Именно поэтому происходит биогенное накопление кислорода в атмосфере, биогенное и хемогенное накопление соединений углерода в земной коре (нефть, уголь, известняки)

Давайте несколько подробнее рассмотрим основные параметры биогеохимического круговорота на суше.

Общий биогеохимический круговорот элементов включает биогеохимические циклы отдельных химических элементов. Наиболее важное значение в функционировании биосферы в целом и отдельных геосистем более низкого классификационного уровня играют круговороты нескольких химических элементов, самых необходимых для живых организмов в связи с их ролью в составе живого вещества и физиологических процессах.



Доводилось мне читать литературу, где описывалась «модная тенденция» в науке XVI–XVII столетия - создание вечного двигателя. Эта мечта так и осталась неосуществимой, но идея, по-моему, срисована с природы. Круговорот живого и неживого происходит постоянно. Кто-то скажет, что через миллиарды лет Земля исчезнет, а я бы возразила, ведь из останков нашей галактики образуется новая. Наша Вселенная и есть вечный двигатель.

В чем суть биологического круговорота веществ

На Земле беспрерывно происходит два типа круговорота: биотический и абиотический.

Вещества сами по себе не являются живыми и одинаково принимают участие в обоих циклах, но как только оказываются внутри живого организма, то его можно считать участником биологического круговорота.

Элементы, участвующие в биологическом цикле:

  • минеральные вещества;
  • газы;
  • вода.

Спектр веществ очень широкий. Условно их можно поделить на жизненно необходимые для организмов (вода, кислород, азот, углекислота) и несущие живому ущерб.

Процесс циркуляция веществ

Независимо от вредности или полезности любое вещество когда-то приходит в организм и однажды его покидает.

В случае с водой циркуляция происходит постоянно. Например, организм человека за день выводит около 6 литров, но мы не теряем свой вес за счет постоянного пополнения водных запасов. Испарившись из тела, молекулы воды устремляются к облакам, выпадают в виде дождя, попадают в водопровод и снова оказываются в организме.

По аналогичному принципу через любой живой организм проходят минеральные вещества и газы.

Циркуляция воздуха происходит интенсивнее всего: за сутки человек вдыхает 13 тыс. литров воздуха содержащего 20% кислорода, который на выдохе преобразуется в углекислоту. Тем не менее, благодаря растениям излишков углекислого газа в природе не наблюдается, они используют его во время фотосинтеза.

Некоторые вещества накапливаются в организме и не выводятся оттуда до самой смерти, они обычно наносят ущерб живому организму. Примерами таких веществ могут быть канцерогены, что вдыхаются курильщиками.

Круговорот веществ в природе представляет собой совокупность повторяющихся процессов превращения или перемещения веществ, имеющую более или менее выраженный циклический характер.

Начнем с круговорота воды. Это сложный геофизический процесс, основными звеньями которого являются: испарение воды, перенос ее паров воздушными потоками, образование облаков и выпадение осадков, поверхностный и подземный сток вод в океан.

В этот геологический круговорот воды встраивается биологический (или биотический) круговорот. Растения всасывают воду из почвы, а затем испаряют ее (см. Транспирация). Часть поглощенной растениями воды идет на построение органических веществ, которые, окисляясь, снова образуют воду (см. Биологическое окисление). Любой живой организм поглощает и выделяет воду, используя при этом энергию, полученную зелеными растениями от солнечного света (см. Фотосинтез). Таким образом, именно излучаемая в виде света энергия Солнца «вращает колесо» круговорота воды, и не только воды, а и всех других веществ.

Рассмотрим круговорот азота. Азот Земли находится в основном в ее атмосфере. Некоторые микроорганизмы, как свободноживущие (например, цианобактерии, азотобактер), так и симбиотические (например, клубеньковые бактерии бобовых), способны поглощать азот из воздуха и фиксировать его в своем теле в виде азотсодержащих органических соединений, превращать молекулярный азот в аммиак, хорошо усваиваемый растениями. Из растений азот в составе органических соединений поступает в организмы животных и других гетеротрофов.

В конечных звеньях пищевых цепей органические вещества, попавшие в почву при разложении трупов и с выделениями организмов, служат пищей для бактерий и грибов. Определенные группы почвенных микроорганизмов (деструкторы) разлагают органические вещества до неорганических, которые могут усваиваться зелеными растениями. Так, органические соединения азота превращаются в почве в аммиак, который снова может быть усвоен растениями. Почвенные бактерии-хемосинтетики (см. Хемосинтез) окисляют аммиак до нитритов и нитратов, которые поступают с водой в растения и там восстанавливаются до аммиака. Есть в почве и микроорганизмы, превращающие аммиак в молекулярный азот, который поступает в атмосферу.

В местах, где выпадает мало осадков, нитраты, образующиеся из гуано - помета колониальных птиц, питающихся живущей в океане рыбой, накапливаются в виде залежей селитры (например, в Чили). Вновь в круговорот азота ее возвращает человек, используя селитру для удобрения полей.

Человек все активнее вмешивается в круговорот веществ. Например, осуществляется синтез сотен миллионов тонн азотных удобрений, но по своей интенсивности промышленная фиксация азота атмосферы уступает биологической и сопряжена с отравлением окружающей среды: излишки азотных удобрений атмосферные осадки смывают с полей в реки. Так они попадают в воду, потребляемую человеком. Оказалось, что нитраты не безвредны для человека - их излишек способствует образованию злокачественных опухолей. Кроме того, синтез азотных удобрений требует больших затрат энергии. Поэтому ученые интенсивно изучают механизм биологической фиксации атмосферного азота, чтобы разработать более эффективные пути обеспечения растений азотом (см. Азотфиксация).

Источником фосфора биосферы являются в основном апатиты, встречающиеся во многих горных породах. Организмы извлекают его из почв и водных растворов, включая в многочисленные фосфорсодержащие органические соединения. С гибелью организмов он возвращается в почву и илы морей, где может концентрироваться в виде отложений (гуано, отложения костей рыб и т. д.). Поскольку большинство почв содержит недостаточное количество фосфора, внесение фосфорных удобрений исключительно важно для получения высоких урожаев сельскохозяйственных культур.

Так же можно описать круговорот многих других элементов. Каждый из них имеет свои особенности, но важно подчеркнуть, что энергия для любого круговорота в конечном счете поступает от Солнца.

Круговорот веществ сложен, и элемент «течет» от соединения к соединению не по одному руслу, а по нескольким, которые разветвляются и снова сливаются, причем круговороты различных элементов взаимосвязаны.

Биологический круговорот лишь часть геологического, но его скорость в сотни тысяч и миллионы раз больше, поскольку все биологические превращения катализируются ферментами, которые в сотни тысяч и миллионы раз активнее неорганических катализаторов.

Другая особенность биологического круговорота - это очень сильное концентрирование биологически важных химических элементов, например фосфора, а иногда даже редкоземельных (например, иттрия в хвощах).

Биолбгический круговорот цикличен, потому что пищевые цепи имеют замкнутый характер. Это обеспечило возможность длительного существования жизни на Земле, поскольку в противном случае самые богатые запасы любого вещества были бы быстро исчерпаны.

Из-за активного вмешательства человека в процессы, происходящие в природе, возникла проблема ее охраны (см. Охрана природы).

Ряд веществ в результате геологических и космических процессов теряется, выходит из круговорота. Так, улетучивается с Земли в космическое пространство водород, образующийся при разложении воды. На дне океанов отлагаются биогенные карбонаты, выводя из круговорота углерод. А из космического пространства с солнечным ветром и метеоритами поступает на Землю углерод и ряд других элементов. При извержении вулканов из земных недр на поверхность выбрасываются углекислый газ, вода и другие соединения. Таким образом, круговорот веществ на Земле связан с глобальными геологическими, биологическими и астрономическими процессами, а также с сознательной деятельностью человечества.