Периодический закон Д. И

Элементы в периодической системе располагаются в последовательности возрастания порядковых номеров Z от 1 до 110. Порядковый номер элемента Z соответствует заряду ядра его атома, а также числу движущихся в поле ядра электронов.

Химические элементы по структуре невозбужденных атомов подразделяются на естественные совокупности, что отражено в периодической системе в виде горизонтальных и вертикальных рядов – периодов и групп.

Период представляет собой последовательный ряд элементов, в атомах которых происходит заполнение одинакового числа энергетических уровней (электронных слоев). Номер периода указывает на число электронных слоев в атомах элементов. Периоды начинаются s-элементами, в атомах которых на новом уровне появляется первый s – электрон с новым значением главного квантового числа n (водород и щелочные металлы), а заканчиваются р – элементами, атомами благородных газов, имеющих устойчивую электронную структуру внешнего уровня ns 2 np 6 (у первого периода – s – элементом 2 He).

Различие в последовательности заполнения электронных слоев (внешних и более близких к ядру) объясняет причину различной длины периодов. 1,2,3 периоды – малые, 4,5,6,7 – большие периоды. Малые периоды содержат 2 и 8 элементов, большие периоды – 18 и 32 элемента, седьмой период остается незавершенным, хотя конструктивно он построен аналогично шестому периоду.

В соответствии с максимальным числом электронов на внешнем уровне невозбужденных атомов элементы периодической системы подразделяются на восемь групп. Группы элементов – это совокупность элементов с одинаковым количеством валентных электронов в атоме. Номер группы равен числу валентных электронов.

Положение в группах s- и p- элементов определяется общим числом электронов внешнего слоя. Например, фосфор (), имеющий на внешнем слое пять электронов, относится кV группе, аргон () – кVIII, кальций () – коII группе и т. д.

Положение в группах d – элементов обусловливается общим числом s – электронов внешнего и d – электронов предвнешнего уровня. По этому признаку первые шесть элементов каждого семейства d – элементов располагаются в одной из соответствующих групп: скандий вIII, марганец вVII, железо вVIII и т. д. Цинк , у которого предвнешний слой завершен и внешними являются- электроны, относится коII группе. В атомах d – элементов, как правило, на внешнем уровне содержится по два электрона, за исключением Cr, Cu, Nb, Mo, Ru, Rh, Ag, Pt, Au. У последних наблюдается энергетически выгодный «провал» одного электрона с внешнего уровня на d – подуровень предвнешнего уровня, что происходит при достройке этого подуровня до пяти (половинная емкость) или десяти электронов (максимальная емкость), т. е. до состояния, когда все орбитали заняты каждая одним электроном или когда они заняты каждая парой электронов. В атоме палладия (Pd) происходит «двойной провал» электронов.

По наличию на внешнем слое лишь одного электрона (за счет «провала» одного из s – электронов внешнего слоя в предвнешний d – подслой) медь (), а также сереброи золотоотносят кI группе. Кобальт и никель, родийи палладий, иридийи платинувместе сFe, Ru, и Os обычно помещают в VIII группу.

В соответствии с особенностями электронных структур семейства 4f – (лантаноиды) и 5f – (актиноиды) элементов помещают в III группу.

Группы делятся на подгруппы: главные (подгруппы А) и побочные (подгруппы В). Подгруппы включают в себя элементы с аналогичными электронными структурами (элементы - аналоги). s - и р – элементы составляют так называемую главную подгруппу, или подгруппу А, d – элементы – побочную, или подгруппу В.

Например, IV группа периодической системы состоит из следующих подгрупп:

Элементы главной подгруппы (А)

Периодическая система химических элементов (таблица Менделеева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). Всего предложено несколько сотен вариантов изображения периодической системы (аналитических кривых, таблиц, геометрических фигур и т. п.). В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.

Периодическая система химических элементов Д.И.Менделеева

ПЕРИОДЫ РЯДЫ ГРУППЫ ЭЛЕМЕНТОВ
I II III IV V VI VII VIII
I 1 H
1,00795

4,002602
гелий

II 2 Li
6,9412
Be
9,01218
B
10,812
С
12,0108
углерод
N
14,0067
азот
O
15,9994
кислород
F
18,99840
фтор

20,179
неон

III 3 Na
22,98977
Mg
24,305
Al
26,98154
Si
28,086
кремний
P
30,97376
фосфор
S
32,06
сера
Cl
35,453
хлор

Ar 18
39,948
аргон

IV 4 K
39,0983
Ca
40,08
Sc
44,9559
Ti
47,90
титан
V
50,9415
ванадий
Cr
51,996
хром
Mn
54,9380
марганец
Fe
55,847
железо
Co
58,9332
кобальт
Ni
58,70
никель
Cu
63,546
Zn
65,38
Ga
69,72
Ge
72,59
германий
As
74,9216
мышьяк
Se
78,96
селен
Br
79,904
бром

83,80
криптон

V 5 Rb
85,4678
Sr
87,62
Y
88,9059
Zr
91,22
цирконий
Nb
92,9064
ниобий
Mo
95,94
молибден
Tc
98,9062
технеций
Ru
101,07
рутений
Rh
102,9055
родий
Pd
106,4
палладий
Ag
107,868
Cd
112,41
In
114,82
Sn
118,69
олово
Sb
121,75
сурьма
Te
127,60
теллур
I
126,9045
иод

131,30
ксенон

VI 6 Cs
132,9054
Ba
137,33
La
138,9
Hf
178,49
гафний
Ta
180,9479
тантал
W
183,85
вольфрам
Re
186,207
рений
Os
190,2
осмий
Ir
192,22
иридий
Pt
195,09
платина
Au
196,9665
Hg
200,59
Tl
204,37
таллий
Pb
207,2
свинец
Bi
208,9
висмут
Po
209
полоний
At
210
астат

222
радон

VII 7 Fr
223
Ra
226,0
Ac
227
актиний ××
Rf
261
резерфордий
Db
262
дубний
Sg
266
сиборгий
Bh
269
борий
Hs
269
хассий
Mt
268
мейтнерий
Ds
271
дармштадтий
Rg
272

Сn
285

Uut 113
284 унунтрий

Uug
289
унунквадий

Uup 115
288
унунпентий
Uuh 116
293
унунгексий
Uus 117
294
унунсептий

Uuо 118

295
унуноктий

La
138,9
лантан
Ce
140,1
церий
Pr
140,9
празеодим
Nd
144,2
неодим
Pm
145
прометий
Sm
150,4
самарий
Eu
151,9
европий
Gd
157,3
гадолиний
Tb
158,9
тербий
Dy
162,5
диспрозий
Ho
164,9
гольмий
Er
167,3
эрбий
Tm
168,9
тулий
Yb
173,0
иттербий
Lu
174,9
лютеций
Ac
227
актиний
Th
232,0
торий
Pa
231,0
протактиний
U
238,0
уран
Np
237
нептуний
Pu
244
плутоний
Am
243
америций
Cm
247
кюрий
Bk
247
берклий
Cf
251
калифорний
Es
252
эйнштейний
Fm
257
фермий
Md
258
менделевий
No
259
нобелий
Lr
262
лоуренсий

Открытие, сделанное Русским химиком Менделеевым, сыграло (безусловно) наиболее важную роль в развитии науки, а именно в развитии атомно-молекулярного учения. Это открытие позволило получить наиболее понятные, и простые в изучении, представления о простых и сложных химических соединениях. Только благодаря таблице мы имеем те понятия об элементах, которыми пользуемся в современном мире. В ХХ веке проявилась прогнозирующая роль периодической системы при оценке химических свойств, трансурановых элементов, показанная еще создателем таблицы.

Разработанная в ХIХ веке, периодическая таблица Менделеева в интересах науки химии, дала готовую систематизацию типов атомов, для развития ФИЗИКИ в ХХ веке (физика атома и ядра атома). В начале ХХ века, ученые физики, путем исследований установили, что порядковый номер, (он же атомный), есть и мера электрического заряда атомного ядра этого элемента. А номер периода (т.е. горизонтального ряда), определяет число электронных оболочек атома. Так же выяснилось, что номер вертикального ряда таблицы определяет квантовую структуру внешней оболочки элемента, (этим самым, элементы одного ряда, обязаны сходством химических свойств).

Открытие Русского ученого, ознаменовало собой, новую эру в истории мировой науки, это открытие позволило не только совершить огромный скачек в химии, но так же было бесценно для ряда других направлений науки. Таблица Менделеева дала стройную систему сведений об элементах, на основе её, появилась возможность делать научные выводы, и даже предвидеть некоторые открытия.

Таблица МенделееваОдна из особенностей периодической таблицы Менделеева, состоит в том, что группа (колонка в таблице), имеет более существенные выражения периодической тенденции, чем для периодов или блоков. В наше время, теория квантовой механики и атомной структуры объясняет групповую сущность элементов тем, что они имеют одинаковые электронные конфигурации валентных оболочек, и как следствие, элементы которые находятся в пределах одой колонки, располагают очень схожими, (одинаковыми), особенностями электронной конфигурации, со схожими химическими особенностями. Так же наблюдается явная тенденция стабильного изменения свойств по мере возрастания атомной массы. Надо заметить, что в некоторых областях периодической таблицы, (к примеру, в блоках D и F), сходства горизонтальные, более заметны, чем вертикальные.

Таблица Менделеева содержит группы, которым присваиваются порядковые номера от 1 до 18 (с лева, на право), согласно международной системе именования групп. В былое время, для идентификации групп, использовались римские цифры. В Америке существовала практика ставить после римской цифры, литер «А» при расположении группы в блоках S и P, или литер «В» - для групп находящихся в блоке D. Идентификаторы, применявшиеся в то время, это то же самое, что и последняя цифра современных указателей в наше время (на пример наименование IVB, соответствует элементам 4 группы в наше время, а IVA - это 14 группа элементов). В Европейских странах того времени, использовалась похожая система, но тут, литера «А» относилась к группам до 10, а литера «В» - после 10 включительно. Но группы 8,9,10 имели идентификатор VIII, как одна тройная группа. Эти названия групп закончили свое существование после того как в 1988 году вступила в силу, новая система нотации ИЮПАК, которой пользуются и сейчас.

Многие группы получили несистематические названия травиального характера, (к примеру - «щелочноземельные металлы», или «галогены», и другие подобные названия). Таких названий не получили группы с 3 по 14, из за того что они в меньшей степени схожи между собой и имеют меньшее соответствие вертикальным закономерностям, их обычно, называют либо по номеру, либо по названию первого элемента группы (титановая, кобальтовая и тому подобно).

Химические элементы относящиеся к одной группе таблицы Менделеева проявляют определенные тенденции по электроотрицательности, атомному радиусу и энергии ионизации. В одной группе, по направлению сверху вниз, радиус атома возрастает, по мере заполнения энергетических уровней, удаляются, от ядра, валентные электроны элемента, при этом снижается энергия ионизации и ослабевают связи в атоме, что упрощает изъятие электронов. Снижается, так же, электроотрицательность, это следствие того, что возрастает расстояние между ядром и валентными электронами. Но из этих закономерностей так же есть исключения, на пример электроотрицательность возрастает, вместо того чтобы убывать, в группе 11, в направлении сверху вниз. В таблице Менделеева есть строка, которая называется «Период».

Среди групп, есть и такие у которых более значимыми являются горизонтальные направления (в отличии от других, у которых большее значение имеют вертикальные направления), к таким группам относится блок F, в котором лантаноиды и актиноиды формируют две важные горизонтальные последовательности.

Элементы показывают определенные закономерности в отношении атомного радиуса, электроотрицательности, энергии ионизации, и в энергии сродства к электрону. Из-за того, что у каждого следующего элемента количество заряженных частиц возрастает, а электроны притягиваются к ядру, атомный радиус уменьшается в направлении слева направо, вместе с этим увеличивается энергия ионизации, при возрастании связи в атоме - возрастает сложность изъятия электрона. Металлам, расположенным в левой части таблицы, характерен меньший показатель энергии сродства к электрону, и соответственно, в правой части показатель энергии сродства к электрону, у не металлов, этот показатель больше, (не считая благородных газов).

Разные области периодической таблицы Менделеева, в зависимости от того на какой оболочке атома, находится последний электрон, и в виду значимости электронной оболочки, принято описывать как блоки.

В S-блок, входит две первые группы элементов, (щелочные и щелочноземельные металлы, водород и гелий).
В P-блок, входят шест последних групп, с 13 по 18 (согласно ИЮПАК, или по системе принятой в Америке - с IIIA до VIIIA), этот блок так же включает в себя все металлоиды.

Блок - D, группы с 3 по 12 (ИЮПАК, или с IIIB до IIB по-американски), в этот блок включены все переходные металлы.
Блок - F, обычно выносится за пределы периодической таблицы, и включает в себя лантаноиды и актиноиды.

Любой, кто ходил в школу, помнит, что одним из обязательных для изучения предметов была химия. Она могла нравиться, а могла и не нравиться – это не важно. И вполне вероятно, что многие знания по этой дисциплине уже забыты и в жизни не применяются. Однако таблицу химических элементов Д. И. Менделеева наверняка помнит каждый. Для многих она так и осталась разноцветной таблицей, где в каждый квадратик вписаны определённые буквы, обозначающие названия химических элементов. Но здесь мы не будем говорить о химии как таковой, и описывать сотни химических реакций и процессов, а расскажем о том, как вообще появилась таблица Менделеева – эта история будет интересна любому человеку, да и вообще всем тем, кто охоч до интересной и полезной информации.

Небольшая предыстория

В далёком 1668 году выдающимся ирландским химиком, физиком и богословом Робертом Бойлем была опубликована книга, в которой было развенчано немало мифов об алхимии, и в которой он рассуждал о необходимости поиска неразложимых химических элементов. Учёный также привёл их список, состоящий всего из 15 элементов, но допускал мысль о том, что могут быть ещё элементы. Это стало отправной точкой не только в поиске новых элементов, но и в их систематизации.

Сто лет спустя французским химиком Антуаном Лавуазье был составлен новый перечень, в который входили уже 35 элементов. 23 из них позже были признаны неразложимыми. Но поиск новых элементов продолжался учёными по всему миру. И главную роль в этом процессе сыграл знаменитый русский химик Дмитрий Иванович Менделеев – он впервые выдвинул гипотезу о том, что между атомной массой элементов и их расположением в системе может быть взаимосвязь.

Благодаря кропотливому труду и сопоставлению химических элементов Менделеев смог обнаружить связь между элементами, в которой они могут быть одним целым, а их свойства являются не чем-то само собой разумеющимся, а представляют собой периодически повторяющееся явление. В итоге, в феврале 1869 года Менделеев сформулировал первый периодический закон, а уже в марте его доклад «Соотношение свойств с атомным весом элементов» был представлен на рассмотрение Русского химического общества историком химии Н. А. Меншуткиным. Затем в том же году публикация Менделеева была напечатана в журнале «Zeitschrift fur Chemie» в Германии, а в 1871 году новую обширную публикацию учёного, посвящённую его открытию, опубликовал другой немецкий журнал «Annalen der Chemie».

Создание периодической таблицы

Основная идея к 1869 году уже была сформирована Менделеевым, причём за довольно короткое время, но оформить её в какую-либо упорядоченную систему, наглядно отображающую, что к чему, он долго не мог. В одном из разговоров со своим соратником А. А. Иностранцевым он даже сказал, что в голове у него уже всё сложилось, но вот привести всё к таблице он не может. После этого, согласно данным биографов Менделеева, он приступил к кропотливой работе над своей таблицей, которая продолжалась трое суток без перерывов на сон. Перебирались всевозможные способы организации элементов в таблицу, а работа была осложнена ещё и тем, что в тот период наука знала ещё не обо всех химических элементах. Но, несмотря на это, таблица всё же была создана, а элементы систематизированы.

Легенда о сне Менделеева

Многие слышали историю, что Д. И. Менделееву его таблица приснилась. Эта версия активно распространялась вышеупомянутым соратником Менделеева А. А. Иностранцевым в качестве забавной истории, которой он развлекал своих студентов. Он говорил, что Дмитрий Иванович лёг спать и во сне отчётливо увидел свою таблицу, в которой все химические элементы были расставлены в нужном порядке. После этого студенты даже шутили, что таким же способом была открыта 40° водка. Но реальные предпосылки для истории со сном всё же были: как уже упоминалось, Менделеев работал над таблицей без сна и отдыха, и Иностранцев однажды застал его уставшим и вымотанным. Днём Менделеев решил немного передохнуть, а некоторое время спустя, резко проснулся, сразу же взял листок бумаги и изобразил на нём уже готовую таблицу. Но сам учёный опровергал всю эту историю со сном, говоря: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово». Так что легенда о сне может быть и очень привлекательна, но создание таблицы стало возможным только благодаря упорному труду.

Дальнейшая работа

В период с 1869 по 1871 годы Менделеев развивал идеи периодичности, к которым склонялось научное сообщество. И одним из важных этапов данного процесса стало понимание того, что любой элемент в системе должно располагать, исходя из совокупности его свойств в сравнении со свойствами остальных элементов. Основываясь на этом, а также опираясь на результаты исследований в изменении стеклообразующих оксидов, химику удалось внести поправки в значения атомных масс некоторых элементов, среди которых были уран, индий, бериллий и другие.

Пустые клетки, остававшиеся в таблице, Менделеев, конечно же, хотел скорее заполнить, и в 1870 году предсказал, что в скором времени будут открыты неизвестные науке химические элементы, атомные массы и свойства которых он сумел вычислить. Первыми из них стали галлий (открыт в 1875 году), скандий (открыт в 1879 году) и германий (открыт в 1885 году). Затем прогнозы продолжили реализовываться, и были открыты ещё восемь новых элементов, среди которых: полоний (1898 год), рений (1925 год), технеций (1937 год), франций (1939 год) и астат (1942-1943 годы). Кстати, в 1900 году Д. И. Менделеев и шотландский химик Уильям Рамзай пришли к мнению, что в таблицу должны быть включены и элементы нулевой группы – до 1962 года они назывались инертными, а после – благородными газами.

Организация периодической системы

Химические элементы в таблице Д. И. Менделеева расположены по рядам, в соответствии с возрастанием их массы, а длина рядов подобрана так, чтобы находящиеся в них элементы имели схожие свойства. Например, благородные газы, такие как радон, ксенон, криптон, аргон, неон и гелий с трудом вступают в реакции с другими элементами, а также имеют низкую химическую активность, из-за чего расположены в крайнем правом столбце. А элементы левого столбца (калий, натрий, литий и т.д.) отлично реагируют с прочими элементами, а сами реакции носят взрывной характер. Говоря проще, внутри каждого столбца элементы имеют подобные свойства, варьирующиеся при переходе от одного столбца к другому. Все элементы, вплоть до №92 встречаются в природе, а с №93 начинаются искусственные элементы, которые могут быть созданы лишь в лабораторных условиях.

В своём первоначальном варианте периодическая система понималась только как отражение существующего в природе порядка, и никаких объяснений, почему всё должно обстоять именно так, не было. И лишь когда появилась квантовая механика, истинный смысл порядка элементов в таблице стал понятен.

Уроки творческого процесса

Говоря о том, какие уроки творческого процесса можно извлечь из всей истории создания периодической таблицы Д. И. Менделеева, можно привести в пример идеи английского исследователя в области творческого мышления Грэма Уоллеса и французского учёного Анри Пуанкаре. Приведём их вкратце.

Согласно исследованиям Пуанкаре (1908 год) и Грэма Уоллеса (1926 год), существует четыре основных стадии творческого мышления:

  • Подготовка – этап формулирования основной задачи и первые попытки её решения;
  • Инкубация – этап, во время которого происходит временное отвлечение от процесса, но работа над поиском решения задачи ведётся на подсознательном уровне;
  • Озарение – этап, на котором находится интуитивное решение. Причём, найтись это решение может в абсолютно не имеющей к задаче ситуации;
  • Проверка – этап испытаний и реализации решения, на котором происходит проверка этого решения и его возможное дальнейшее развитие.

Как мы видим, в процессе создания своей таблицы Менделеев интуитивно следовал именно этим четырём этапам. Насколько это эффективно, можно судить по результатам, т.е. по тому, что таблица была создана. А учитывая, что её создание стало огромным шагом вперёд не только для химической науки, но и для всего человечества, приведённые выше четыре этапа могут быть применимы как к реализации небольших проектов, так и к осуществлению глобальных замыслов. Главное помнить, что ни одно открытие, ни одно решение задачи не могут быть найдены сами по себе, как бы ни хотели мы увидеть их во сне и сколько бы ни спали. Чтобы что-то получилось, не важно, создание это таблицы химических элементов или разработка нового маркетинг-плана, нужно обладать определёнными знаниями и навыками, а также умело использовать свои потенциал и упорно работать.

Мы желаем вам успехов в ваших начинаниях и успешной реализации задуманного!

Периоди ческая систе ма элеме нтов Д. И. Менделеева, естественная , являющаяся табличным (или др. графическим) выражением . Периодическая система элементов разработана Д. И. Менделеевым в 1869-1871.

История периодической системы элементов. Попытки систематизации предпринимались различными учёными в , Англии, США с 30-х годов 19 в. Менделеева - И. Дёберейнер, Ж. Дюма, французский химик А. Шанкуртуа, англ. химики У. Одлинг, Дж. Ньюлендс и др. установили существование групп элементов, сходных по химическим свойствам, так называемых «естественных групп» (например, «триады» Дёберейнера). Однако эти учёные не шли дальше установления частных закономерностей внутри групп. В 1864 Л. Мейер на данных об предложил таблицу, показывающую соотношение для нескольких характерных групп элементов. Теоретических сообщений из своей таблицы Мейер не сделал.

Прообразом научной периодической системы элементов явилась таблица «Опыт системы элементов, основанной на их и химическом сходстве», составленная Менделеевым 1 марта 1869 (рис. 1 ). На протяжении последующих двух лет автор совершенствовал эту таблицу, ввёл представления о группах, рядах и периодах элементов; сделал попытку оценить ёмкость малых и больших периодов, содержащих, по его мнению, соответственно по 7 и 17 элементов. В 1870 он назвал свою систему естественной, а в 1871 - периодической. Уже тогда структура периодической системы элементов приобрела во многом современные очертания (рис. 2 ).

Периодическая система элементов не сразу завоевала признание как фундаментальное научное обобщение; положение существенно изменилось лишь после открытия Ga, Sc, Ge и установления двухвалентности Be (он долгое время считался трёхвалентным). Тем не менее периодическая система элементов во многом представляла эмпирическое обобщение фактов, поскольку был неясен физический смысл периодического закона и отсутствовало объяснение причин периодического изменения свойств элементов в зависимости от возрастания . Поэтому вплоть до физического обоснования периодического закона и разработки теории периодической системы элементов многие факты не удавалось объяснить. Так, неожиданным явилось открытие в конце 19 в. , которые, казалось, не находили места в периодической системе элементов; эта трудность была устранена благодаря включению в периодическую систему элементов самостоятельной нулевой группы (впоследствии VIIIa-подгруппы). Открытие многих «радиоэлементов» в начале 20 в. привело к противоречию между необходимостью их размещения в периодической системе элементов и её структурой (для более чем 30 таких элементов было 7 «вакантных» мест в шестом и седьмом периодах). Это противоречие было преодолено в результате открытия . Наконец, величина () как параметра, определяющего свойства элементов, постепенно утрачивала своё значение.

Одна из главных причин невозможности объяснения физического смысла периодического закона и периодической системы элементов состояла в отсутствии теории строения (см. , Атомная физика). Поэтому важнейшей вехой на пути развития периодической системы элементов явилась планетарная модель , предложенная Э. Резерфордом (1911). На её основе голландский учёный А. ван ден Брук высказал предположение (1913), что элемента в периодической системе элементов ( Z) численно равен заряду ядра (в единицах элементарного заряда). Это было экспериментально подтверждено Г. Мозли (1913-14, см. Мозли закон). Так удалось установить, что периодичность изменения свойств элементов зависит от , а не от . В результате на научной основе была определена нижняя граница периодической системы элементов ( как элемент с минимальным Z = 1); точно оценено число элементов между и ; установлено, что «пробелы» в периодической системе элементов соответствуют неизвестным элементам с Z = 43, 61, 72, 75, 85, 87.

Оставался, однако, неясным вопрос о точном числе , и (что особенно важно) не были вскрыты причины периодического изменения свойств элементов в зависимости от Z. Эти причины были найдены в ходе дальнейшей разработки теории периодической системы элементов на основе квантовых представлений о строении (см. далее). Физическое обоснование периодического закона и открытие явления изотонии позволили научно определить понятие « » (« »). Прилагаемая периодическая система (см. илл. ) содержит современные значения элементов по углеродной шкале в соответствии с Международной таблицей 1973. В квадратных скобках приведены наиболее долгоживущих . Вместо наиболее устойчивых 99 Tc, 226 Ra, 231 Pa и 237 Np указаны этих , принятые (1969) Международной комиссией по .

Структура периодической системы элементов . Современная (1975) периодическая система элементов охватывает 106 ; из них все трансурановые (Z = 93-106), а также элементы с Z = 43 (Tc), 61 (Pm), 85 (At) и 87 (Fr) получены искусственно. За всю историю периодической системы элементов было предложено большое количество (нескольких сотен) вариантов её графического изображения, преимущественно в виде таблиц; известны изображения и в виде различных геометрических фигур (пространственных и плоскостных), аналитических кривых (например, ) и т.д. Наибольшее распространение получили три формы периодической системы элементов: короткая, предложенная Менделеевым (рис. 2 ) и получившая всеобщее признание (в современном виде она дана на илл. ); длинная (рис. 3 ); лестничная (рис. 4 ). Длинную форму также разрабатывал Менделеев, а в усовершенствованном виде она была предложена в 1905 А. Вернером. Лестничная форма предложена английским учёным Т. Бейли (1882), датским учёным Ю. Томсеном (1895) и усовершенствована Н. (1921). Каждая из трёх форм имеет достоинства и недостатки. Фундаментальным принципом построения периодической системы элементов является разделение всех на группы и периоды. Каждая группа в свою очередь подразделяется на главную (а) и побочную (б) подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы а- и б-подгрупп в каждой группе, как правило, обнаруживают между собой определённое химическое сходство, главным образом в высших , которые, как правило, соответствуют номеру группы. Периодом называется совокупность элементов, начинающаяся и заканчивающаяся (особый случай - первый период); каждый период содержит строго определённое число элементов. Периодическая система элементов состоит из 8 групп и 7 периодов (седьмой пока не завершен).

Специфика первого периода в том, что он содержит всего 2 элемента: H и He. Место H в системе неоднозначно: поскольку он проявляет свойства, общие со и с , его помещают либо в Ia-, либо (предпочтительнее) в VIIa-подгруппу. - первый представитель VIIa-подгруппы (однако долгое время Не и все объединяли в самостоятельную нулевую группу).

Второй период (Li - Ne) содержит 8 элементов. Он начинается Li, единственная которого равна I. Затем идёт Be - , II. Металлический характер следующего элемента В выражен слабо ( III). Идущий за ним C - типичный , может быть как положительно, так и отрицательно четырёхвалентным. Последующие N, O, F и Ne - , причём только у N высшая V соответствует номеру группы; лишь в редких случаях проявляет положительную , а для F известна VI. Завершает период Ne.

Третий период (Na - Ar) также содержит 8 элементов, характер изменения свойств которых во многом аналогичен наблюдающемуся во втором периоде. Однако Mg, в отличие от Be, более металличен, равно как и Al по сравнению с В, хотя Al присуща . Si, Р, S, Cl, Ar - типичные , но все они (кроме Ar) проявляют высшие , равные номеру группы. Таким образом, в обоих периодах по мере увеличения Z наблюдается ослабление металлического и усиление неметаллического характера элементов. Менделеев называл элементы второго и третьего периодов (малых, по его терминологии) типическими. Существенно, что они принадлежат к числу наиболее распространённых в природе, а С, N и O являются наряду с H основными элементами органической материи (органогенами). Все элементы первых трёх периодов входят в подгруппы а.

По современной терминологии (см. далее), элементы этих периодов относятся к s-элементам (щелочные и щёлочноземельные ), составляющим Ia- и IIa-подгруппы (выделены на цветной таблице красным цветом), и р-элементам (В - Ne, At - Ar), входящим в IIIa - VIIIa-подгруппы (их символы выделены оранжевым цветом). Для элементов малых периодов с возрастанием сначала наблюдается уменьшение , а затем, когда число в наружной оболочке уже значительно возрастает, их взаимное отталкивание приводит к увеличению . Очередной максимум достигается в начале следующего периода на щелочном элементе. Примерно такая же закономерность характерна для .

Четвёртый период (K - Kr) содержит 18 элементов (первый большой период, по Менделееву). После K и щёлочноземельного Ca (s-элементы) следует ряд из десяти так называемых (Sc - Zn), или d-элементов (символы даны синим цветом), которые входят в подгруппы 6 соответствующих групп периодической системы элементов. Большинство (все они ) проявляет высшие , равные номеру группы. Исключение - триада Fe - Co - Ni, где два последних элемента максимально положительно трёхвалентны, а в определённых условиях известно в VI. Элементы, начиная с Ga и кончая Kr (р-элементы), принадлежат к подгруппам а, и характер изменения их свойств такой же, как и в соответствующих интервалах Z у элементов второго и третьего периодов. Установлено, что Kr способен образовывать (главным образом с F), но VIII для него неизвестна.

Пятый период (Rb - Xe) построен аналогично четвёртому; в нём также имеется вставка из 10 (Y - Cd), d-элементов. Специфические особенности периода: 1) в триаде Ru - Rh - Pd только проявляет VIII; 2) все элементы подгрупп а проявляют высшие , равные номеру группы, включая и Xe; 3) у I отмечаются слабые металлические свойства. Таким образом, характер изменения свойств по мере увеличения Z у элементов четвёртого и пятого периодов более сложен, поскольку металлические свойства сохраняются в большом интервале .

Шестой период (Cs - Rn) включает 32 элемента. В нём помимо 10 d-элементов (La, Hf - Hg) содержится совокупность из 14 f-элементов, от Ce до Lu (символы чёрного цвета). Элементы от La до Lu химически весьма сходны. В короткой форме периодической системы элементов включаются в La (поскольку их преобладающая III) и записываются отдельной строкой внизу таблицы. Этот приём несколько неудобен, поскольку 14 элементов оказываются как бы вне таблицы. Подобного недостатка лишены длинная и лестничная формы периодической системы элементов, хорошо отражающие специфику на фоне целостной структуры периодической системы элементов. Особенности периода: 1) в триаде Os - Ir - Pt только проявляет VIII; 2) At имеет более выраженный (по сравнению с 1) металлический характер; 3) Rn, по-видимому (его мало изучена), должен быть наиболее реакционноспособным из .

Седьмой период, начинающийся с Fr (Z = 87), также должен содержать 32 элемента, из которых пока известно 20 (до элемента с Z = 106). Fr и Ra - элементы соответственно Ia- и IIa -подгрупп (s-элементы), Ac - аналог элементов IIIб -подгруппы (d-элемент). Следующие 14 элементов, f-элементы (с Z от 90 до 103), составляют семейство . В короткой форме периодической системы элементов они занимают Ac и записываются отдельной строкой внизу таблицы, подобно , в отличие от которых характеризуются значительным разнообразием . В связи с этим в химическом отношении ряды и обнаруживают заметные различия. Изучение химической природы элементов с Z = 104 и Z = 105 показало, что эти элементы являются аналогами и соответственно, то есть d-элементами, и должны размещаться в IVб- и Vб-подгруппах. Членами б-подгрупп должны быть и последующие элементы до Z = 112, а далее (Z = 113-118) появятся р-элементы (IIIa - VIlla-подгруппы).

Теория периодической системы элементов. В основе теории периодической системы элементов лежит представление о специфических закономерностях построения электронных оболочек (слоев, уровней) и подоболочек (оболочек, подуровней) в по мере роста Z (см. , Атомная физика). Это представление было развито в 1913-21 с учётом характера изменения свойств в периодической системе элементов и результатов изучения их . выявил три существенные особенности формирования электронных конфигураций : 1) заполнение электронных оболочек (кроме оболочек, отвечающих значениям главного квантового числа n = 1 и 2) происходит не монотонно до полной их ёмкости, а прерывается появлением совокупностей , относящихся к оболочкам с большими значениями n; 2) сходные типы электронных конфигураций периодически повторяются; 3) границы периодов периодической системы элементов (за исключением первого и второго) не совпадают с границами последовательных электронных оболочек.

В обозначениях, принятых в атомной физике, реальная схема формирования электронных конфигураций по мере роста Z может быть в общем виде записана следующим образом:

Вертикальными чертами разделены периоды периодической системы элементов (их номера обозначены цифрами наверху); жирным шрифтом выделены подоболочки, которыми завершается построение оболочек с данным n. Под обозначениями подоболочек проставлены значения главного (n) и орбитального (l) квантовых чисел, характеризующие последовательно заполняющиеся подоболочки. В соответствии с ёмкость каждой электронной оболочки равна 2n 2 , а ёмкость каждой подоболочки - 2(2l + 1). Из вышеприведённой схемы легко определяются ёмкости последовательных периодов: 2, 8, 8, 18, 18, 32, 32... Каждый период начинается элементом, в которого появляется с новым значением n. Таким образом, периоды можно характеризовать как совокупности элементов, начинающиеся элементом со значением n, равным номеру периода, и l = 0 (ns 1 -элементы), и завершающиеся элементом с тем же n и l = 1 (np 6 -элементы); исключение - первый период, содержащий только ls-элементы. При этом к а-подгруппам принадлежат элементы, для которых n равно номеру периода, а l = 0 или 1, то есть происходит построение электронной оболочки с данным n. К б-подгруппам принадлежат элементы, в которых происходит достройка оболочек, остававшихся незавершёнными (в данном случае n меньше номера периода, а l = 2 или 3). Первый - третий периоды периодической системы элементов содержат только элементы а-подгрупп.

Приведённая реальная схема формирования электронных конфигураций не является безупречной, поскольку в ряде случаев чёткие границы между последовательно заполняющимися подоболочками нарушаются (например, после заполнения в Cs и Ba 6s-подоболочки в появляется не 4f-, а 5d-электрон, имеется 5d-электрон в Gd и т.д.). Кроме того, первоначально реальная схема не могла быть выведена из каких-либо фундаментальных физических представлений; такой вывод стал возможным благодаря применению к проблеме строения .

Типы конфигураций внешних электронных оболочек (на илл. конфигурации указаны) определяют основные особенности химического поведения элементов. Эти особенности являются специфическими для элементов а-подгрупп (s-и р-элементы), б-подгрупп (d-элементы) и f-семейств ( и ). Особый случай представляют собой элементы первого периода (H и He). Высокая химическая атомарного объясняется лёгкостью отщепления единственного ls-электрона, тогда как конфигурация (1s 2) является весьма прочной, что обусловливает его химическую инертность.

Поскольку у элементов а-подгрупп происходит заполнение внешних электронных оболочек (с n, равным номеру периода), то свойства элементов заметно меняются по мере роста Z. Так, во втором периоде Li (конфигурация 2s 1) - химически активный , легко теряющий валентный , a Be (2s 2) - также , но менее активный. Металлический характер следующего элемента B (2s 2 p) выражен слабо, а все последующие элементы второго периода, у которых происходит застройка 2р-подоболочки, являются уже . Восьмиэлектронная конфигурация внешней электронной оболочки Ne (2s 2 p 6) чрезвычайно прочна, поэтому - . Аналогичный характер изменения свойств наблюдается у элементов третьего периода и у s-и р-элементов всех последующих периодов, однако ослабление связи внешних с ядром в а-подгруппах по мере роста Z определённым образом сказывается на их свойствах. Так, у s-элементов отмечается заметный рост химической , а у р-элементов - нарастание металлических свойств. В VIIIa-подгруппе ослабляется устойчивость конфигурации ns 2 np 6 , вследствие чего уже Kr (четвёртый период) приобретает способность вступать в . Специфика р-элементов 4-6-го периодов связана также с тем, что они отделены от s-элементов совокупностями элементов, в которых происходит застройка предшествующих электронных оболочек.

У переходных d-элементов б-подгрупп достраиваются незавершённые оболочки с n, на единицу меньшим номера периода. Конфигурация внешних оболочек у них, как правило, ns 2 . Поэтому все d-элементы являются . Аналогичная структура внешней оболочки d-элементов в каждом периоде приводит к тому, что изменение свойств d-элементов по мере роста Z не является резким и чёткое различие обнаруживается лишь в высших , в которых d-элементы проявляют определённое сходство с р-элементами соответствующих групп периодической системы элементов. Специфика элементов VIIIб-подгруппы объясняется тем, что их d-подоболочки близки к завершению, в связи с чем эти элементы не склонны (за исключением Ru и Os) проявлять высшие . У элементов Iб-подгруппы (Cu, Ag, Au) d-подоболочка фактически оказывается завершенной, но ещё недостаточно стабилизированной, эти элементы проявляют и более высокие (до III в случае Au).

Значение периодической системы элементов . Периодическая система элементов сыграла и продолжает играть огромную роль в развитии естествознания. Она явилась важнейшим достижением атомно-молекулярного учения, позволила дать современное определение понятия « » и уточнить понятия о и соединениях. Закономерности, вскрытые периодической системой элементов, оказали существенное влияние на разработку теории строения , способствовали объяснению явления изотонии. С периодической системой элементов связана строго научная постановка проблемы прогнозирования в , что проявилось как в предсказании существования неизвестных элементов и их свойств, так и в предсказании новых особенностей химического поведения уже открытых элементов. Периодическая система элементов - фундамент , в первую очередь неорганической; она существенно помогает решению задач синтеза с заранее заданными свойствами, разработке новых материалов, в частности полупроводниковых, подбору специфических для различных химических процессов и т.д. Периодическая система элементов- также научная основа преподавания .

Лит.: Менделеев Д. И., Периодический закон. Основные статьи, М., 1958; Кедров Б. М., Три аспекта атомистики. ч. 3. Закон Менделеева, М., 1969; Рабинович Е., Тило Э., Периодическая система элементов. История и теория, М.- Л., 1933; Карапетьянц М. Х., Дракин С. И., Строение , М., 1967; Астахов К. В., Современное состояние периодической системы Д. И. Менделеева, М., 1969; Кедров Б. М., Трифонов Д. Н., Закон периодичности и . Открытия и хронология, М., 1969; Сто лет периодического закона . Сборник статей, М., 1969; Сто лет периодического закона . Доклады на пленарных заседаниях, М., 1971; Spronsen J. W. van, The periodic system of chemical elements. A history of the first hundred years, Amst.- L.- N. Y., 1969; Клечковский В. М., Распределение атомных и правило последовательного заполнения (n + l)-групп, М., 1968; Трифонов Д. Н., О количественной интерпретации периодичности, М., 1971; Некрасов Б. В., Основы , т. 1-2, 3 изд., М., 1973; Кедров Б. М., Трифонов Д. Н., О современных проблемах периодической системы, М., 1974.

Д. Н. Трифонов.


Рис. 1. Таблица «Опыт системы элементов», основанной на их и химическом сходстве, составленная Д. И. Менделеевым 1 марта 1869.



Рис. 3. Длинная форма периодической системы элементов (современный вариант).



Рис. 4. Лестничная форма периодической системы элементов (по Н. , 1921).



Рис. 2. «Естественная система элементов» Д. И. Менделеева (короткая форма), опубликованная во 2-й части 1-го издания Основ в 1871.



Периодическая система элементов Д. И. Менделеева.

Периодическая система химических элементов - естественная классификация химических элементов, которая является графическим (табличным) выражением периодического закона химических элементов. Структура её, во многом сходная с современной, разработана Д. И. Менделеевым на основе периодического закона в 1869-1871 гг.

Прообразом периодической системы был "Опыт системы элементов, основанной на их атомном весе и химическом родстве", составленный Д. И. Менделеевым 1 марта 1869 г. На протяжении двух лет учёный непрерывно совершенствовал "Опыт системы", ввёл представление о группах, рядах и периодах элементов. В результате структура периодической системы приобрела во многом современные очертания.

Важным для её эволюции стало понятие о месте элемента в системе, определяемом номерами группы и периода. Опираясь на это понятие, Менделеев пришёл к выводу, что необходимо изменить атомные массы некоторых элементов: урана, индия, церия и его спутников. Это было первое практическое применение периодической системы. Менделеев также впервые предсказал существование нескольких неизвестных элементов. Учёный описал важнейшие свойства экаалюминия (будущего галлия), экабора (скандия) и экасилиция (германия). Кроме того, он предсказал существование аналогов марганца (будущих технеция и рения), теллура (полония), иода (астата), цезия (франция), бария (радия), тантала (протактиния). Прогнозы учёного в отношении данных элементов носили общий характер, поскольку эти элементы располагались в малоизученных областях периодической системы.

Первые варианты периодической системы во многом представляли лишь эмпирическое обобщение. Ведь был неясен физический смысл периодического закона, отсутствовало объяснение причин периодического изменения свойств элементов в зависимости от возрастания атомных масс. В связи с этим оставались нерешёнными многие проблемы. Есть ли границы периодической системы? Можно ли определить точное количество существующих элементов? Оставалась неясной структура шестого периода - каково точное количество редкоземельных элементов. Было неизвестно, существуют ли ещё элементы между водородом и литием, какова структура первого периода. Поэтому вплоть до физического обоснования периодического закона и разработки теории периодической системы перед ней не раз возникали серьёзные трудности. Неожиданным было открытие в 1894-1898 гг. плеяды инертных газов, которым, казалось, не находилось места в периодической системе. Эта трудность была устранена благодаря идее включить в структуру периодической системы самостоятельную нулевую группу. Массовое открытие радиоэлементов на стыке XIX и XX вв. (к 1910 г. их число составляло около 40) привело к резкому противоречию между необходимостью их размещения в периодической системе и её сложившейся структурой. Для них было только 7 вакантных мест в шестом и седьмом периодах. Эта проблема была решена в результате установления правил сдвига и открытия изотопов.

Одна из главных причин невозможности объяснить физический смысл периодического закона и структуру периодической системы состояла в том, что было неизвестно, как построен атом. Важнейшей вехой на пути развития периодической системы явилось создание атомной модели Э. Резерфордом (1911). На её основе голландский учёный А. Ван ден Брук (1913) высказал предположение, что порядковый номер элемента в периодической системе численно равен заряду ядра его атома (Z). Это экспериментально подтвердил английский ученый Г. Мозли (1913). Периодический закон получил физическое обоснование: периодичность изменения свойств элементов стала рассматриваться в зависимости от Z-заряда ядра атома элемента, а не от атомной массы.

В результате структура периодической системы значительно упрочилась. Была определена нижняя граница системы. Это водород - элемент с минимальным Z = 1. Стало возможным точно оценить количество элементов между водородом и ураном. Были определены "пробелы" в периодической системе, соответствующие неизвестным элементам с Z = 43, 61, 72, 75, 85, 87. Однако оставались неясными вопросы о точном количестве редкоземельных элементов и, что особенно важно, не были вскрыты причины периодичности изменения свойств элементов в зависимости от Z.

Опираясь на сложившуюся структуру периодической системы и результаты изучения атомных спектров, датский учёный Н. Бор в 1918-1921 гг. развил представления о последовательности построения электронных оболочек и подоболочек в атомах. Учёный пришёл к выводу, что сходные типы электронных конфигураций атомов периодически повторяются. Таким образом, было показано, что периодичность изменения свойств химических элементов объясняется существованием периодичности в построении электронных оболочек и подоболочек атомов.

В настоящее время периодическая система охватывает 126 элементов. Из них все трансурановые элементы (Z = 93-107), а также элементы с Z = 43 (технеций), 61 (прометий), 85 (астат), 87 (франций) получены искусственно. За всю историю существования периодической системы было предложено большое количество (> 500) вариантов ее графического изображения, преимущественно в виде таблиц, а также в виде различных геометрических фигур (пространственных и плоскостных), аналитических кривых (спиралей и пр.) и т. д. Наибольшее распространение получили короткая, длинная и лестничная формы таблиц.

В настоящее время предпочтение отдается короткой.

Фундаментальным принципом построения периодической системы является её подразделение на группы и периоды. Менделеевское понятие рядов элементов ныне не употребляется, поскольку лишено физического смысла. Группы, в свою очередь, подразделяются на главную (а) и побочную (b) подгруппы. В каждой подгруппе содержатся элементы - химические аналоги. Элементы а- и b-подгрупп в большинстве групп также обнаруживают между собой определённое сходство, главным образом в высших степенях окисления, которые, как правило, равны номеру группы. Периодом называется совокупность элементов, которая начинается щелочным металлом и заканчивается инертным газом (особый случай - первый период). Каждый период содержит строго определённое количество элементов. Периодическая система состоит из восьми групп и восьми периодов.

Особенность первого периода заключается в том, что он содержит всего 2 элемента: водород и гелий. Место водорода в системе неоднозначно. Поскольку он проявляет свойства, общие со щелочными металлами и с галогенами, то его помещают либо в Iаα-, либо в VIIaα - подгруппу, причем последний вариант употребляется чаще. Гелий - первый представитель VIIIa - подгруппы. Долгое время гелий и все инертные газы выделяли в самостоятельную нулевую группу. Это положение потребовало пересмотра после синтеза химических соединений криптона, ксенона и радона. В результате инертные газы и элементы бывшей VIII группы (железо, кобальт, никель и платиновые металлы) были объединены в рамках одной группы. Этот вариант не безупречен, так как инертность гелия и неона не вызывает сомнений.

Второй период содержит 8 элементов. Он начинается щелочным металлом литием, единственная степень окисления которого +1. Далее следует бериллий (металл, степень окисления +2). Бор проявляет уже слабо выраженный металлический характер и является неметаллом (степень окисления +3). Следующий за бором углерод - типичный неметалл, который проявляет степень окисления как +4, так и -4. Азот, кислород, фтор и неон - все неметаллы, причём у азота высшая степень окисления +5 соответствует номеру группы; для фтора известна степень окисления +7. Инертный газ неон завершает период.

Третий период (натрий - аргон) также содержит 8 элементов. Характер изменения их свойств во многом аналогичен тому, который наблюдался для элементов второго периода. Но здесь есть и своя специфика. Так, магний в отличие от бериллия более металличен, так же как и алюминий по сравнению с бором. Кремний, фосфор, сера, хлор, аргон - всё это типичные неметаллы. И все они, кроме аргона, проявляют высшие степени окисления, равные номеру группы.

Как видим, в обоих периодах по мере увеличения Z наблюдается ослабление металлических и усиление неметаллических свойств элементов. Д. И. Менделеев называл элементы второго и третьего периодов (по его словам, малых) типическими. Элементы малых периодов принадлежат к числу самых распространённых в природе. Углерод, азот и кислород (наряду с водородом) - органогены, т.е. основные элементы органической материи.

Все элементы первого-третьего периодов размещаются в аα-подгруппах.

Четвёртый период (калий - криптон) содержит 18 элементов. По Менделееву, это первый большой период. После щелочного металла калия и щелочноземельного металла кальция следует ряд элементов, состоящий из 10 так называемых переходных металлов (скандий - цинк). Все они входят в b-подгруппы. Большинство переходных металлов проявляют высшие степени окисления, равные номеру группы, кроме железа, кобальта и никеля. Элементы, начиная с галлия и кончая криптоном, принадлежат к а-подгруппам. Криптон в отличие от предшествующих инертных газов может образовывать химические соединения.

Пятый период (рубидий - ксенон) по своему построению аналогичен четвёртому. В нём также содержится вставка из 10 переходных металлов (иттрий - кадмий). У элементов этого периода есть свои особенности. В триаде рутений - родий - палладий для рутения известны соединения, где он проявляет степень окисления +8. Все элементы а-подгрупп проявляют высшие степени окисления, равные номеру группы, исключая ксенон. Можно заметить, что особенности изменения свойств у элементов четвёртого и пятого периодов по мере роста Z имеют по сравнению со вторым и третьим периодами более сложный характер.

Шестой период (цезий - радон) включает 32 элемента. В этом периоде кроме 10 переходных металлов (лантан, гафний - ртуть) содержится ещё и совокупность из 14 лантаноидов - от церия до лютеция. Элементы от церия до лютеция химически очень похожи, и на этом основании их давно включают в семейство редкоземельных элементов. В короткой форме периодической системы ряд лантаноидов включают в клетку лантана и расшифровку этого ряда дают внизу таблицы.

В чём состоит специфика элементов шестого периода? В триаде осмий - иридий - платина для осмия известна степень окисления +8. Астат имеет достаточно выраженный металлический характер. Радон, по всей вероятности, обладает наибольшей реакционной способностью из всех инертных газов. К сожалению, из-за того, что он сильно радиоактивен, его химия мало изучена.

Седьмой период начинается с франция. Подобно шестому, он также должен содержит 32 элемента. Франций и радий соответственно являются элементами Iaα- и IIаα-подгрупп, актиний принадлежит к III b-подгруппе. Наиболее распространено представление о семействе актиноидов, которое включает элементы от тория до лоуренсия и аналогично лантаноидам. Расшифровка этого ряда элементов также дается внизу таблицы.

Теперь посмотрим, как изменяются свойства химических элементов в подгруппах периодической системы. Основная закономерность этого изменения заключается в усилении металлического характера элементов по мере роста Z. Особенно отчётливо эта закономерность проявляется в IIIаα- VIIaα-подгруппах. Для металлов Iaα-IIIаα-подгрупп наблюдается рост химической активности. У элементов IVаα - VIIaα-подгрупп по мере увеличения Z наблюдается ослабление химической активности элементов. У элементов b-подгрупп изменение химической активности более сложно.

Теория периодической системы была разработана Н. Бором и другими учёными в 20-х гг. XX в. и основана на реальной схеме формирования электронных конфигураций атомов. Согласно этой теории, по мере роста Z заполнение электронных оболочек и подоболочек в атомах элементов, входящих в периоды периодической системы, происходит в следующей последовательности:

Номера периодов

На основании теории периодической системы можно дать следующее определение периода: период есть совокупность элементов, начинающаяся элементом со значением n, равным номеру периода, и l = 0 (s-элементы) и заканчивающаяся элементом с тем же значением n и l = 1 (р-элементы). Исключение составляет первый период, содержащий только 1s-элементы. Из теории периодической системы следуют и числа элементов в периодах: 2, 8, 8, 18, 18, 32...

На приложенной цветной вкладке символы элементов каждого типа (s-, р-, d- и f-элементы) изображены на определённом цветовом фоне: s-элементы - на красном, р-элементы - на оранжевом, d-элементы - на синем, f-элементы - на зелёном. В каждой клетке приведены порядковые номера и атомные массы элементов, а также электронные конфигурации внешних электронных оболочек, которые в основном и определяют химические свойства элементов.

Из теории периодической системы следует, что к а-подгруппам принадлежат элементы с n, равным номеру периода, и l = 0 и 1. К b-подгруппам относятся те элементы, в атомах которых происходит достройка оболочек, ранее остававшихся незавершёнными. Именно поэтому первый, второй и третий периоды не содержат элементов b-подгрупп.

Структура периодической системы элементов тесно связана со строением атомов химических элементов. По мере роста Z периодически повторяются сходные типы конфигурации внешних электронных оболочек. А именно они определяют основные особенности химического поведения элементов. Эти особенности по-разному проявляются для элементов а-подгрупп (s- и р-элементы), для элементов b-подгрупп (переходные d-элементы) и элементов f-семейств - лантаноидов и актиноидов. Особый случай представляют элементы первого периода - водород и гелий. Для водорода характерна высокая химическая активность, потому что его единственный 1s-электрон легко отщепляется. В то же время конфигурация гелия (1s 2) весьма устойчива, что обусловливает его полную химическую бездеятельность.

У элементов а-подгрупп происходит заполнение внешних электронных оболочек (с n, равным номеру периода); поэтому свойства этих элементов заметно изменяются по мере роста Z. Так, во втором периоде литий (конфигурация 2s) - активный металл, легко теряющий единственный валентный электрон; бериллий (2s 2) - также металл, но менее активный вследствие того, что его внешние электроны более прочно связаны с ядром. Далее, бор (2s 2 р) имеет слабо выраженный металлический характер, а все последующие элементы второго периода, у которых происходит построение 2р-подоболочки, являются уже неметаллами. Восьмиэлектронная конфигурация внешней электронной оболочки неона (2s 2 р 6) - инертного газа - очень прочна.

Химические свойства элементов второго периода объясняются стремлением их атомов приобрести электронную конфигурацию ближайшего инертного газа (конфигурацию гелия - для элементов от лития до углерода или конфигурацию неона - для элементов от углерода до фтора). Вот почему, например, кислород не может проявлять высшей степени окисления, равной номеру группы: ведь ему легче достичь конфигурации неона путём приобретения дополнительных электронов. Такой же характер изменения свойств проявляется у элементов третьего периода и у s- и р-элементов всех последующих периодов. В то же время ослабление прочности связи внешних электронов с ядром в а-подгруппах по мере роста Z проявляется в свойствах соответствующих элементов. Так, для s-элементов отмечается заметный рост химической активности по мере роста Z, а для р-элементов - нарастание металлических свойств.

В атомах переходных d-элементов достраиваются не завершенные ранее оболочки со значением главного квантового числа n, на единицу меньшим номера периода. За отдельными исключениями, конфигурация внешних электронных оболочек атомов переходных элементов - ns 2 . Поэтому все d-элементы являются металлами, и именно поэтому изменения свойств d-элементов по мере роста Z не так резки, как мы это видели у s-и р-элементов. В высших степенях окисления d-элементы проявляют определенное сходство с р-элементами соответствующих групп периодической системы.

Особенности свойств элементов триад (VIII b-подгруппа) объясняются тем, что d-подоболочки близки к завершению. Вот почему железо, кобальт, никель и платиновые металлы, как правило, не склонны давать соединения высших степеней окисления. Исключение составляют лишь рутений и осмий, дающие оксиды RuO 4 и OsO 4 . У элементов Ib- и IIb-подгрупп d-подоболочка фактически оказывается завершенной. Поэтому они проявляют степени окисления, равные номеру группы.

В атомах лантаноидов и актиноидов (все они металлы) происходит достройка ранее не завершенных электронных оболочек со значением главного квантового числа n на две единицы меньше номера периода. В атомах этих элементов конфигурация внешней электронной оболочки (ns 2) сохраняется неизменной. В то же время f-электроны фактически не оказывают влияния на химические свойства. Вот почему лантаноиды так сходны.

У актиноидов дело обстоит гораздо сложнее. В интервале зарядов ядер Z = 90 - 95 электроны 6d и 5f могут принимать участие в химических взаимодействиях. А отсюда следует, что актиноиды проявляют гораздо более широкий диапазон степеней окисления. Например, для нептуния, плутония и америция известны соединения, где эти элементы выступают в семивалентном состоянии. Только у элементов, начиная с кюрия (Z = = 96), становится устойчивым трехвалентное состояние. Таким образом, свойства актиноидов значительно отличаются от свойств лантаноидов, и оба семейства поэтому нельзя считать подобными.

Семейство актиноидов заканчивается элементом с Z = 103 (лоуренсий). Оценка химических свойств курчатовия (Z = 104) и нильсбория (Z = 105) показывает, что эти элементы должны быть аналогами соответственно гафния и тантала. Поэтому ученые полагают, что после семейства актиноидов в атомах начинается систематическое заполнение 6d-подоболочки.

Конечное число элементов, которое охватывает периодическая система, неизвестно. Проблема её верхней границы - это, пожалуй, основная загадка периодической системы. Наиболее тяжёлый элемент, который удалось обнаружить в природе, - это плутоний (Z = 94). Достигнутый предел искусственного ядерного синтеза - элемент с порядковым номером 118. Остается открытым вопрос: удастся ли получить элементы с большими порядковыми номерами, какие и сколько? На него нельзя пока ответить сколь-либо определённо.

С помощью сложнейших расчетов, выполненных на электронных вычислительных машинах, ученые попытались определить строение атомов и оценить важнейшие свойства таких "сверхэлементов", вплоть до огромных порядковых номеров (Z = 172 и даже Z = 184). Полученные результаты оказались весьма неожиданными. Например, в атоме элемента с Z = 121 предполагается появление 8р-электрона; это после того, как в атомах c Z = 119 и 120 завершилось формирование 85-подоболочки. А ведь появление р-электронов вслед за s-электронами наблюдается только в атомах элементов второго и третьего периодов. Расчёты показывают также, что у элементов гипотетического восьмого периода заполнение электронных оболочек и подоболочек атомов происходит в очень сложной и своеобразной последовательности. Поэтому оценить свойства соответствующих элементов - проблема весьма сложная. Казалось бы, восьмой период должен содержать 50 элементов (Z = 119-168), но согласно расчетам, он должен завершаться у элемента с Z = 164, т. е. на 4 порядковых номера раньше. А "экзотический" девятый период, оказывается, должен состоять из 8 элементов. Вот его "электронная" запись: 9s 2 8p 4 9p 2 . Иными словами, он содержал бы всего 8 элементов, как второй и третий периоды.

Трудно сказать, насколько соответствовали бы истине расчёты, проделанные с помощью ЭВМ. Однако если бы они были подтверждены, то пришлось бы серьезно пересмотреть закономерности, лежащие в основе периодической системы элементов и её структуры.

Периодическая система сыграла и продолжает играть огромную роль в развитии различных областей естествознания. Она явилась важнейшим достижением атомно-молекулярного учения, способствовала появлению современного понятия "химический элемент" и уточнению понятий о простых веществах и соединениях.

Закономерности, вскрытые периодической системой, оказали существенное влияние на разработку теории строения атомов, открытие изотопов, появление представлений о ядерной периодичности. С периодической системой связана строго научная постановка проблемы прогнозирования в химии. Это проявилось в предсказании существования и свойств неизвестных элементов и новых особенностей химического поведения элементов, уже открытых. Ныне периодическая система представляет фундамент химии, в первую очередь неорганической, существенно помогая решению задачи химического синтеза веществ с заранее заданными свойствами, разработке новых полупроводниковых материалов, подбору специфических катализаторов для различных химических процессов и т.д. И наконец, периодическая система лежит в основе преподавания химии.