Порция радиации. Радиация, дозы радиации, излучения и нормы

Радиационный фон

Радиационный фон — это уровень квантовых потоков и элементарных частиц в окружающей среде. Это понятие важно для человека в том случае, когда речь идет об ионизирующем излучении. В большом количестве оно представляет серьезную опасность для живых организмов. Если естественный радиационный фон (ЕРФ) местности не превышает допустимых норм, то на ней можно проживать, заниматься фермерством и употреблять в пищу дары природы. Когда ЕРФ повышенный, то в таких местах находиться нельзя, даже при соблюдении мер безопасности следует сократить время пребывания на зараженной территории до минимума. В некоторых случаях радиация приносит пользу человеку. С ее помощью проводится весьма успешное лечение онкологических заболеваний. Воздействие изотопов на растения, насекомых и животных позволяет выводить новые виды, отличающиеся набором положительных свойств.

Разновидности радиационного излучения

На естественный радиационный фон влияет количество элементарных частиц, которые ранее попали на местность или предмет и продолжают поступать из различных источников.

Современная наука различает такие виды излучения, которые непосредственно влияют на естественный радиационный фон:

  1. Гамма-излучение. Представляет собой поток микрочастиц с нейтральным зарядом. Обладает высокой проникающей способностью. Этот тип радиации наиболее губителен для всего живого. Защитой от рентгеновских лучей являются материалы, обладающие тяжелыми ядрами. Они задерживают гамма-частицы, становясь источником излучения.
  2. Бета-излучение. Его носителем являются более крупные частицы со средней проникающей способностью. Являясь потенциально опасными для людей, бета-лучи задерживаются в тонком слое металла, древесины и камня.
  3. Альфа-излучение. Является потоком тяжелых положительно заряженных частиц. Несут в себе мощный ионный заряд, обладающий разрушительным действием для клеток живых тканей. Что касается человека, то альфа-частицы поражают только внешний слой кожи. Преградой для них является даже одежда.

На земле источниками излучения, создающими естественный и искусственный радиационный фон, являются солнце, звезды, горные породы и промышленные объекты, возведенные человеком. Создают уровень заражения изотопы таких химических элементов, как йод, уран, радий, стронций, кобальт, цезий и плутоний. Зная, что такое радиация, можно успешно защищаться от такого опасного для жизни и здоровья явления.

Источники естественной радиации

До тех пор, пока Земля не обрела железного ядра и не получила импульса на вращение, она была открыта для всех типов радиоактивного излучения. После того как вокруг нашей планеты образовалось мощное магнитное поле, она обрела защиту от проникающей радиации. Губительный для всего живого солнечный ветер огибает Землю вдоль линий магнитного поля. На поверхность планеты попадает незначительная часть тяжелых альфа-частиц. Они представляют опасность только при длительном пребывании на солнце без защиты. Из-за этого возникает ожог кожи.

Определенную опасность представляют объемные выбросы энергии, производимые пульсарами. Эти космические объекты за одну секунду производят столько энергии, сколько Солнце вырабатывает за тысячу лет. От такого луча земная атмосфера не спасает.

Определенное влияние на формирование радиационного фона играет рельеф местности и состав грунта. Наиболее древней горной породой, сформировавшейся миллиарды лет назад, является гранит. Там, где этот минерал выходит на поверхность или находится под тонким слоем почвы, отмечается повышенный уровень радиации.

На уровень излучения влияет и высота над уровнем моря. С каждым километром подъема над землей уменьшается толщина защитного слоя атмосферы. Уже на высоте 10000 метров присутствует такой радиационный фон, норма которого близка к предельно допустимой.

В зависимости от географического положения меняется уровень радиации. На полюсах он значительно сильнее, чем на экваторе. Это явление обуславливается формой магнитного поля Земли, которое сходится на полюсах.

Характеристика грунта. Наибольший уровень радиации наблюдается в местах, где залегает урановая руда. Даже если месторождение этого химического элемента находится в нескольких километрах под землей, уровень его излучения может превышать предельно допустимый в разы. Небольшой фон могут создать железная руда и бокситы. Эти элементы имеют свойство накапливать радиацию.

Искусственная радиация на земле

Это явление представляет собой превышение естественного природного фона вследствие деятельности человека. История освоения атома начитывает несколько десятилетий. Поскольку эта область промышленности еще до конца не освоена, риск возникновения нештатных ситуаций достаточно велик.

Нормы радиационного фона могут быть превышены по таким причинам:

  1. Проведение испытаний ядерного оружия. Территория, где проводились испытания атомных бомб, насыщена радиоактивными изотопами. Она будет непригодна для жизни еще многие столетия.
  2. Использование атома в мирных целях. Ядерные заряды использовались для изменения русла рек, создания искусственных водоемов и для ликвидации пожаров на газовых месторождениях.
  3. Аварии на объектах атомной энергетики. Во время подобных инцидентов происходит выброс изотопов в атмосферу. В зависимости от масштаба аварии прилегающая территория становится непригодной для жизни на срок от 30 до 10000 лет.
  4. Происшествия во время транспортировки и захоронения ядерного топлива и отходов. В результате зараженный изотопами материал разносится по обширной территории.

В зависимости от степени радиоактивного заражения местности пребывание на ней может быть ограничено по времени или запрещено полностью.

Последствия радиоактивного заражения

Уровень радиации измеряется в количестве изотопов, полученных за единицу времени. Мощность излучения определяется в рентгенах в час, полученная доза вычисляется суммированием всех показателей за год. Эта составляющая измеряется в греях (Гр).

В зависимости от объема поглощенных организмом изотопов человек может получить лучевую болезнь:

  1. I степень. Заболевание не представляет опасности для человека при условии его эвакуации из зараженной зоны. Оно проявляется в виде слабости, головной боли, нарушении сна и аппетита. При получении дозы до 2 Гр выздоровление может наступить уже через полтора-два месяца.
  2. II степень. В случае получения дозы до 4 Гр наступает поражение средней тяжести. Больной испытывает острые боли, у него нарушается деятельность внутренних органов и центральной нервной системы. Внешне болезнь проявляется выпадением волос, зубов и образованием язв. Даже квалифицированное лечение не дает полного выздоровления.
  3. III степень. Доза 4-6 Гр вызывает необратимые процессы в организме человека. Болезнь тяжелой формы приводит к отказу внутренних органов и некрозу мягких тканей. Как правило, при сопутствующей потере иммунитета заболевание приводит к летальному исходу.
  4. IV степень. Тяжелая форма развивается при получении больным более 6 Гр. Описать симптомы, которые испытывают пациенты, не представляется возможным, так как их смерть наступала в считанные часы после облучения. Летальному исходу предшествовало полное нарушение структуры мягких тканей, остановка сердца и прекращение дыхания.

Лучевой травмой считается получение человеком дозы, величина которой составляет менее 1 Гр.

Действующие нормы радиационного фона

Нормы радиации являются усредненными, полученными по результатам клинических исследований больных, получивших дозы радиации различного уровня. Полученные суммарные дозы люди могут получать за разные промежутки времени. Чем больше сила излучения, тем опаснее могут быть последствия и сложнее лечение. Поэтому и определение, что такое нормальный радиационный фон, устанавливается на законодательном уровне и является величиной для регламентирования условий проживания или труда на предприятии.

Правила радиационной безопасности касаются таких категорий граждан:

  • военнослужащие, проходящие службу на атомных подводных лодках и надводных кораблях;
  • персонал АЭС;
  • люди, проживающие на территории с высоким радиационным фоном;
  • профессиональные спасатели и работники аварийных бригад, работающие на объектах атомной энергетики;
  • работники медицины, которые имеют дело с приборами, содержащими радиоактивные элементы;
  • ученые, работающие с радиоактивным материалом.

Согласно проведенным исследованиям, абсолютно безопасной для здоровья взрослого человека считается излучение мощностью 20 микрорентген в час.

Предельной границей радиации считается значение, равное 50 микрорентген в час. Однако, если в течение года, получая через равные промежутки времени небольшие дозы излучения, человек получит суммарно 1 рентген, то это будет для него практически безопасно. Радиация постепенно из организма выводится. Действующие сегодня нормы радиоактивной безопасности определяют предельную дозу полученного за жизнь облучения в пределах 60-70 рентген.

Врач-пульмонолог, Терапевт, Кардиолог, Врач функциональной диагностики. Врач высшей категории. Опыт работы: 9 лет. Закончила Хабаровский государственный мединститут, клиническая ординатура по специальности «терапия». Занимаюсь диагностикой, лечением и профилактикой заболеваний внутренних органов, также провожу профосмотры. Лечу заболевания органов дыхания, желудочно-кишечного тракта, сердечно-сосудистой системы.

Зиверт (обозначение: Зв, Sv ) - сравнительно новая единица измерения СИ (1979г) эффективной и эквивалентной доз ионизирующего излучения. 1 зиверт - это количество энергии, поглощённое килограммом биологической ткани, равное по воздействию поглощенной дозе 1 Гр. Единица названа в честь шведского учёного Рольфа Зиверта.
При определении эффективной дозы учитывается биологическое воздействие радиации, она равна поглощённой дозе, умноженной на коэффициент качества, зависящий от вида излучения и характеризует биологическую активность того или иного вида излучения.

Раньше (а иногда и сейчас) использовалась единица бэр (биологический эквивалент рентгена), англ. rem (roentgen equivalent man) - устаревшая внесистемная единица измерения эквивалентной дозы. 100 бэр равны 1 зиверту.

Допустимые и смертельные дозы для человека

Эквивалентная доза (E, HT) отражает биологический эффект облучения. Это поглощённая доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения(WR) или коэффициент качества. При воздействии различных видов излучения с различными взвешивающими коэффициентами эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения.

Естественное фоновое ионизирующее излучение приблизительно равно 2-3 мЗв/год.

Для практических прикидок можно пользоваться следующими соображениями:

При однократном равномерном облучении всего тела и не оказании специализированной медицинской помощи смерть наступает в 50 % случаев при:
дозе порядка 3-5 Зв из-за повреждения костного мозга в течение 30-60 суток;
дозе порядка 10±5 Зв из-за повреждения желудочно-кишечного тракта и лёгких в течение 10-20 суток;
дозе ›15 Зв из-за повреждения нервной системы в течение 1-5 суток.

Помните, что радиация накапливается, а дозы суммируются!

UPdt.

Чему соответствуют различные дозы облучения в зивертах.

– 0,005 мЗв (0,5 мбэр) – ежедневный в течение года трехчасовой просмотр телепередач;

– 10 мкЗв (0,01 мЗв или 1 мбэр) – перелет самолетом на расстояние 2400 км;

– 1 мЗв (100 мбэр) – фоновое облучение за год;

– 5 мЗв (500 мбэр) – допустимое облучение персонала в нормальных условиях;

– 0, 03 Зв (3 бэр) – облучение при рентгенографии зубов (местное);

– 0, 05 Зв (5 бэр) – допустимое облучение персонала атомных электростанций в нормальных условиях за год;

– 0,1 Зв (10 бэр) – допустимое аварийное облучение населения (разовое);

– 0,25 Зв (25 бэр) – допустимое облучение персонала (разовое);

– 0,3 Зв (30 бэр) – облучение при рентгеноскопии желудка (местное);

– 0,75 Зв (75 бэр) – кратковременное незначительное изменение состава крови;

– 1 Зв (100 бэр) – нижний уровень развития легкой степени лучевой болезни;

– 4,5 Зв (450 бэр) – тяжелая степень лучевой болезни (погибает 50% облученных);

– 6 – 7 Зв (600 – 700 бэр) и более – однократно полученная доза считается абсолютно смертельной. (Вместе с тем в медицинской практике имеются случаи выздоровления больных, которые получили радиационное облучение в 6 – 7 Зв (600 – 700 бэр)).

Наиболее вероятные эффекты при различных значениях доз облучения и мощностей дозы, отнесенные к целому телу

10000 мЗв (10 Зв) ‑ При кратковременном облучении причинили бы немедленную болезнь и последующую смерть в течение нескольких недель

Между 2000 и 10000 мЗв (2 – 10 Зв) ‑ При кратковременном облучении причинили бы острую лучевую болезнь с вероятным фатальным исходом

1000 мЗв (1 Зв) ‑ При кратковременном облучении, вероятно, причинили бы временное недомогание, но не привели бы к смерти. Поскольку доза облучения накапливается в течение времени, то облучение в 1000 мЗв, вероятно, привело бы к риску появления раковых заболеваний многими годами позже

50 мЗв/в год ‑ Самая низкая мощность дозы, при которой возможно появление раковых заболеваний. Облучение при дозах выше этой приводит к увеличению вероятности заболевания раком

20 мЗв/в год ‑ Усредненный более чем за 5 лет – предел для персонала в ядерной и горнодобывающих отраслях промышленности.

10 мЗв/в год Максимальный уровень мощности дозы, получаемый шахтерами, добывающими уран

3 – 5 мЗв/в год ‑ Обычная мощность дозы, получаемая шахтерами, добывающими уран

3 мЗв/в год ‑ Нормальный радиационный фон от естественных природных источников ионизирующего излучения, включая мощность дозы почти в 2 мЗв/в год от радона в воздухе. Эти уровни радиации близки к минимальным дозам, получаемым всеми людьми на планете.

0.3 – 0.6 мЗв/в год ‑ Типичный диапазон мощности дозы от искусственных источников излучения, главным образом медицинских

0.05 мЗв/в год ‑ Уровень фоновой радиации, требуемый по нормам безопасности, вблизи ядерных электростанций. Фактическая доза вблизи ядерных объектов намного меньше.

Под словом «радиация» чаще понимают ионизирующее излучение, связанное с радиоактивным распадом. При этом человек испытывает действие и неионизирующих видов излучения: электромагнитного и ультрафиолетового.

Основными источниками радиации являются:

  • природные радиоактивные вещества вокруг и внутри нас - 73%;
  • медицинские процедуры (рентгеноскопия и прочие) - 13%;
  • космическое излучение - 14%.

Конечно, существуют техногенные источники загрязнений, появившиеся в результате крупных аварий. Это наиболее опасные для человечества события, поскольку, как и при ядерном взрыве, в таком случае может выделяться йод (J-131), цезий (Cs-137) и стронций (в основном Sr-90). Оружейный плутоний (Pu-241) и продукты его распада не менее опасны.

Также не стоит забывать, что последние 40 лет атмосфера Земли очень сильно загрязнялась радиоактивными продуктами атомных и водородных бомб. Конечно, на данный момент радиоактивные осадки выпадают только в связи с природными катаклизмами, например при извержении вулканов. Но, с другой стороны, при делении ядерного заряда в момент взрыва образуется радиоактивный изотоп углерода-14 с периодом полураспада 5 730 лет. Взрывы изменили равновесное содержание в атмосфере углерода-14 на 2,6%. В настоящее время средняя мощность эффективной эквивалентной дозы, обусловленная продуктами взрывов, составляет около 1 мбэр/год, что равно примерно 1% от мощности дозы, обусловленной естественным радиационным фоном.

mos-rep.ru

Энергетика - это ещё одна причина серьёзного накопления радионуклидов в организме человека и животных. Каменные угли, используемые для работы ТЭЦ, содержат естественные радиоактивные элементы, такие как калий-40, уран-238 и торий-232. Годовая доза в районе ТЭЦ на угле составляет 0,5–5 мбэр/год. Кстати, атомные электростанции характеризуются значительно меньшими выбросами.

Медицинским процедурам с использованием источников ионизирующего излучения подвергаются почти все жители Земли. Но это более сложный вопрос, к которому мы вернёмся чуть позже.

В каких единицах измеряется радиация

Для измерения количества энергии излучения используют различные единицы. В медицине основной является зиверт - эффективная эквивалентная доза, полученная за одну процедуру всем организмом. Именно в зивертах на единицу времени измеряют уровень радиационного фона. Беккерель служит единицей измерения радиоактивности воды, почвы и так далее на единицу объёма.

С прочими единицами измерения можно ознакомиться в таблице.

Термин

Единицы измерения

Соотношение единиц

Определение

В системе СИ

В старой системе

Активность

Беккерель, Бк

1 Ки = 3,7 × 10 10 Бк

Число радиоактивных распадов в единицу времени

Мощность дозы

Зиверт в час, Зв/ч

Рентген в час, Р/ч

1 мкР/ч = 0,01 мкЗв/ч

Уровень излучения в единицу времени

Поглощённая доза

Радиан, рад

1 рад = 0,01 Гр

Количество энергии ионизирующего излучения, переданное определённому объекту

Эффективная доза

Зиверт, Зв

1 рем = 0,01 Зв

Доза облучения, учитывающая различную

чувствительность органов к радиации

Последствия облучения

Воздействие радиации на человека называют облучением. Основное его проявление - острая лучевая болезнь, которая имеет различные степени тяжести. Лучевая болезнь может проявиться при облучении дозой, равной 1 зиверту. Доза в 0,2 зиверта увеличивает риск раковых заболеваний, а в 3 зиверта - угрожает жизни облучённого.

Лучевая болезнь проявляется в виде следующих симптомов: потеря сил, понос, тошнота и рвота; сухой, надсадный кашель; нарушения сердечной деятельности.

Кроме этого, облучение вызывает лучевые ожоги. Очень большие дозы приводят к отмиранию кожи, вплоть до повреждения мышц и костей, что лечится гораздо хуже, чем химические или тепловые ожоги. Вместе с ожогами могут появиться нарушения обмена веществ, инфекционные осложнения, лучевое бесплодие, лучевая катаракта.

Последствия облучения могут проявить себя через длительное время - это так называемый стохастический эффект. Он выражается в том, что среди облучённых людей может увеличиваться частота определённых онкологических заболеваний. Теоретически возможны также генетические эффекты, однако даже среди 78 тысяч детей японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не обнаружили увеличения числа случаев наследственных болезней. И это несмотря на то, что последствия облучения сильнее сказываются на делящихся клетках, поэтому для детей облучение гораздо опаснее, чем для взрослых.

Кратковременное облучение малыми дозами, применяемое для обследований и лечения некоторых заболеваний, порождает интересный эффект под названием гормезис. Это стимуляция какой-либо системы организма внешними воздействиями, имеющими силу, недостаточную для проявления вредных факторов. Данный эффект позволяет организму мобилизовать силы.

Статистически радиация может повышать уровень онкологии, однако очень сложно выявить прямое влияние излучения, отделив его от действия химически вредных веществ, вирусов и прочего. Известно, что после бомбардировки Хиросимы первые эффекты в виде учащения заболеваемости стали проявляться только через 10 лет и более. Напрямую с облучением связан рак щитовидной железы, молочной железы и определённых частей .


chornobyl.in.ua

Естественный радиационный фон составляет порядка 0,1–0,2 мкЗв/ч. Считается, что постоянный фоновый уровень выше 1,2 мкЗв/ч опасен для человека (нужно различать мгновенно поглощённую дозу облучения и постоянную фоновую). Много ли это? Для сравнения: уровень радиации на расстоянии 20 км от японской атомной электростанции «Фукусима-1» в момент аварии превысил норму в 1 600 раз. Максимальный зафиксированный уровень излучения на этом расстоянии - 161 мкЗв/ч. После взрыва на уровень радиации доходил до нескольких тысяч микрозивертов в час.

За время 2–3-часового перелёта над экологически чистой территорией человек получает облучение в 20–30 мкЗв. Та же доза облучения грозит в том случае, если человеку в один день делают 10–15 снимков современным рентгенографическим аппаратом - визиографом. Пара часов перед электронно-лучевым монитором или телевизором дают ту же дозу облучения, что и один такой снимок. Годовая доза от курения по одной сигарете в день - 2,7 мЗв. Одна флюорография - 0,6 мЗв, одна рентгенография - 1,3 мЗв, одна рентгеноскопия - 5 мЗв. Излучение от бетонных стен - до 3 мЗв в год.

При облучении всего тела и для первой группы критических органов (сердце, лёгкие, мозг, поджелудочная железа и прочие) нормативные документы устанавливают максимальное значение дозы в 50 000 мкЗв (5 бэр) в год.

Острая лучевая болезнь развивается при дозе однократного облучения в 1 000 000 мкЗв (25 000 цифровых флюорографий, 1 000 рентгенографий позвоночника в один день). Большие дозы влияют ещё сильнее:

  • 750 000 мкЗв - кратковременное незначительное изменение состава крови;
  • 1 000 000 мкЗв - лёгкая степень лучевой болезни;
  • 4 500 000 мкЗв - тяжёлая степень лучевой болезни (погибает 50% облучённых);
  • около 7 000 000 мкЗв - смерть.

Опасны ли рентгенологические исследования


Чаще всего с облучением мы сталкиваемся во время медицинских исследований . Однако дозы, которые мы получаем в процессе, настолько малы, что бояться их не стоит. Время облучения старинным рентгеновским аппаратом составляет 0,5–1,2 секунды. А с современным визиографом всё происходит в 10 раз быстрее: за 0,05–0,3 секунды.

Согласно медицинским требованиям, изложенным в СанПиН 2.6.1.1192-03 , при проведении профилактических медицинских рентгенологических процедур доза радиации не должна превышать 1 000 мкЗв в год. Сколько это в снимках? Довольно много:

  • 500 прицельных снимков (2–3 мкЗв), полученных с помощью радиовизиографа;
  • 100 таких же снимков, но с использованием хорошей рентгеновской плёнки (10–15 мкЗв);
  • 80 цифровых ортопантомограмм (13–17 мкЗв);
  • 40 плёночных ортопантомограмм (25–30 мкЗв);
  • 20 компьютерных томограмм (45–60 мкЗв).

То есть если каждый день в течение всего года делать по одному снимку на визиографе, добавить к этому пару-тройку компьютерных томограмм и столько же ортопантомограмм, то даже в этом случае мы не выйдем за пределы разрешённых доз.

Кому нельзя облучаться

Однако существуют люди, которым даже такие виды облучения строго запрещены. Согласно утверждённым в России стандартам (СанПиН 2.6.1.1192-03), облучение в виде рентгенографии можно проводить только во второй половине беременности за исключением случаев, когда должен решаться вопрос об аборте или необходимости оказания скорой или неотложной помощи.

Пункт 7.18 документа гласит: «Рентгенологические исследования беременных проводятся с использованием всех возможных средств и способов защиты таким образом, чтобы доза, полученная плодом, не превысила 1 мЗв за два месяца невыявленной беременности. В случае получения плодом дозы, превышающей 100 мЗв, врач обязан предупредить пациентку о возможных последствиях и рекомендовать прервать беременность».

Молодым людям, которым в будущем предстоит стать родителями, необходимо закрывать от облучения брюшную область и половые органы. Рентгеновское излучение наиболее негативно действует на клетки крови и половые клетки. У детей вообще должно быть экранировано всё тело, кроме исследуемой области, а проводиться исследования должны только при необходимости и по назначению врача.

Сергей Нелюбин, заведующий отделением рентгенодиагностики РНЦХ им. Б. В. Петровского, кандидат медицинских наук, доцент

Как защититься

Главных методов защиты от рентгеновского излучения три: защита временем, защита расстоянием и экранирование. То есть чем меньше вы находитесь в зоне действия рентгеновских лучей и чем дальше вы от источника излучения, тем меньше доза облучения.

Хотя безопасная доза лучевой нагрузки рассчитана на год, всё же не стоит в один день делать несколько рентгенологических исследований, например флюорографию и . Ну и у каждого больного должен быть радиационный паспорт (он вкладывается в медицинскую карточку): в него врач-рентгенолог заносит информацию о полученной при каждом обследовании дозе.

Рентгенография прежде всего влияет на железы внутренней секреции, лёгкие. То же касается и небольших доз облучения при авариях и выбросах активных веществ. Поэтому в качестве профилактики врачи рекомендуют дыхательные упражнения. Они помогут очистить лёгкие и активизировать резервы организма.

Для нормализации внутренних процессов организма и вывода вредных веществ стоит употреблять больше антиоксидантов: витаминов А, С, Е (красное вино, виноград). Полезны сметана, творог, молоко, зерновой хлеб, отруби, необработанный рис, чернослив.

В том случае, если продукты питания внушают определённые опасения, можно воспользоваться рекомендациями для жителей регионов, затронутых в результате аварии на Чернобыльской АЭС.

»
При реальном облучении вследствие аварии или в заражённой зоне необходимо сделать довольно много. Сначала нужно провести дезактивацию: быстро и аккуратно снять одежду и обувь с носителями радиации, правильно утилизировать её или хотя бы удалить радиоактивную пыль со своих вещей и окружающих поверхностей. Достаточно помыть тело и одежду (по отдельности) под проточной водой с использованием моющих средств.

До или после воздействия радиации используют пищевые добавки и препараты против радиации. Наиболее известны лекарства с высоким содержанием йода, который помогает эффективно бороться с негативным воздействием его радиоактивного изотопа, локализующегося в щитовидной железе. Для блокировки накопления радиоактивного цезия и недопущения вторичного поражения используют «Калия оротат». Добавки с кальцием дезактивируют радиоактивный препарат стронция на 90%. Для защиты клеточных структур и показан диметилсульфид.

Кстати, всем известный активированный уголь может нейтрализовать действие радиации. Да и польза употребления водки сразу после облучения вовсе не миф. Это действительно помогает вывести радиоактивные изотопы из организма в простейших случаях.

Только не стоит забывать: самостоятельное лечение должно проводиться только при невозможности своевременно обратиться к врачу и только в случае реального, а не выдуманного облучения. Рентген-диагностика, просмотр телевизора или полёт на самолёте не влияют на здоровье среднестатистического жителя Земли.

Обзор

Из всех лучевых методов диагностики только три: рентген (в том числе, флюорография), сцинтиграфия и компьютерная томография, потенциально связаны с опасной радиацией - ионизирующим излучением. Рентгеновские лучи способны расщеплять молекулы на составные части, поэтому под их действием возможно разрушение оболочек живых клеток, а также повреждение нуклеиновых кислот ДНК и РНК. Таким образом, вредное воздействие жесткой рентгеновской радиации связано с разрушением клеток и их гибелью, а также повреждением генетического кода и мутациями. В обычных клетках мутации со временем могут стать причиной ракового перерождения, а в половых клетках - повышают вероятность уродств у будущего поколения.

Вредное действие таких видов диагностики как МРТ и УЗИ не доказано. Магнитно-резонансная томография основана на излучении электромагнитных волн, а ультразвуковые исследования - на испускании механических колебаний. Ни то ни другое не связано с ионизирующей радиацией.

Ионизирующее облучение особенно опасно для тканей организма, которые интенсивно обновляются или растут. Поэтому в первую очередь от радиации страдают:

  • костный мозг, где происходит образование клеток иммунитета и крови,
  • кожа и слизистые оболочки, в том числе, желудочно-кишечного тракта,
  • ткани плода у беременной женщины.

Особенно чувствительны к облучению дети всех возрастов, так как уровень обмена веществ и скорость клеточного деления у них гораздо выше, чем у взрослых. Дети постоянно растут, что делает их уязвимыми перед радиацией.

Вместе с тем, рентгеновские методы диагностики: флюорография, рентгенография, рентгеноскопия, сцинтиграфия и компьютерная томография широко используются в медицине. Некоторые из нас подставляются под лучи рентгеновского аппарата по собственной инициативе: дабы не пропустить что-то важное и обнаружить незримую болезнь на самой ранней стадии. Но чаще всего на лучевую диагностику посылает врач. Например, вы приходите в поликлинику, чтобы получить направление на оздоровительный массаж или справку в бассейн, а терапевт отправляет вас на флюорографию. Спрашивается, к чему этот риск? Можно ли как-то измерить «вредность» при рентгене и сопоставить её с необходимостью такого исследования?

Sp-force-hide { display: none;}.sp-form { display: block; background: rgba(255, 255, 255, 1); padding: 15px; width: 450px; max-width: 100%; border-radius: 8px; -moz-border-radius: 8px; -webkit-border-radius: 8px; border-color: rgba(255, 101, 0, 1); border-style: solid; border-width: 4px; font-family: Arial, "Helvetica Neue", sans-serif; background-repeat: no-repeat; background-position: center; background-size: auto;}.sp-form input { display: inline-block; opacity: 1; visibility: visible;}.sp-form .sp-form-fields-wrapper { margin: 0 auto; width: 420px;}.sp-form .sp-form-control { background: #ffffff; border-color: rgba(209, 197, 197, 1); border-style: solid; border-width: 1px; font-size: 15px; padding-left: 8.75px; padding-right: 8.75px; border-radius: 4px; -moz-border-radius: 4px; -webkit-border-radius: 4px; height: 35px; width: 100%;}.sp-form .sp-field label { color: #444444; font-size: 13px; font-style: normal; font-weight: bold;}.sp-form .sp-button { border-radius: 4px; -moz-border-radius: 4px; -webkit-border-radius: 4px; background-color: #ff6500; color: #ffffff; width: auto; font-weight: 700; font-style: normal; font-family: Arial, sans-serif; box-shadow: none; -moz-box-shadow: none; -webkit-box-shadow: none;}.sp-form .sp-button-container { text-align: center;}

Учет доз облучения

По закону, каждое диагностическое исследование, связанное с рентгеновским облучением, должно быть зафиксировано в листе учета дозовых нагрузок, который заполняет врач-рентгенолог и вклеивает в вашу амбулаторную карту. Если вы обследуетесь в больнице, то эти цифры врач должен перенести в выписку.

На практике этот закон мало кто соблюдает. В лучшем случае вы сможете найти дозу, которой вас облучили, в заключении к исследованию. В худшем - вообще никогда не узнаете, сколько энергии получили с незримыми лучами. Однако ваше полное право - потребовать от врача рентгенолога информацию о том, сколько составила «эффективная доза облучения» - именно так называется показатель, по которому оценивают вред от рентгена. Эффективная доза облучения измеряется в милли- или микрозивертах - сокращенно «мЗв» или «мкЗв».

Раньше дозы излучения оценивали по специальным таблицам, где были усредненные цифры. Теперь каждый современный рентгеновский аппарат или компьютерный томограф имеют встроенный дозиметр, который сразу после исследования показывает количество зивертов, полученных вами.

Доза излучения зависит от многих факторов: площади тела, которую облучали, жесткости рентгеновских лучей, расстояния до лучевой трубки и, наконец, технических характеристик самого аппарата, на котором проводилось исследование. Эффективная доза, полученная при исследовании одной и той же области тела, например, грудной клетки, может меняться в два и более раза, поэтому постфактум подсчитать, сколько радиации вы получили можно будет лишь приблизительно. Лучше выяснить это сразу, не покидая кабинета.

Какое обследование самое опасное?

Для сравнения «вредности» различных видов рентгеновской диагностики можно воспользоваться средними показателями эффективных доз, приведенных в таблице. Это данные из методических рекомендаций № 0100/ 1659-07-26 , утвержденных Роспотребнадзором в 2007 году. С каждым годом техника совершенствуется и дозовую нагрузку во время исследований удается постепенно уменьшать. Возможно в клиниках, оборудованных новейшими аппаратами, вы получите меньшую дозу облучения.

Часть тела,
орган
Доза мЗв/процедуру
пленочные цифровые
Флюорограммы
Грудная клетка 0,5 0,05
Конечности 0,01 0,01
Шейный отдел позвоночника 0,3 0,03
Грудной отдел позвоночника 0,4 0,04
1,0 0,1
Органы малого таза, бедро 2,5 0,3
Ребра и грудина 1,3 0,1
Рентгенограммы
Грудная клетка 0,3 0,03
Конечности 0,01 0,01
Шейный отдел позвоночника 0,2 0,03
Грудной отдел позвоночника 0,5 0,06
Поясничный отдел позвоночника 0,7 0,08
Органы малого таза, бедро 0,9 0,1
Ребра и грудина 0,8 0,1
Пищевод, желудок 0,8 0,1
Кишечник 1,6 0,2
Голова 0,1 0,04
Зубы, челюсть 0,04 0,02
Почки 0,6 0,1
Молочная железа 0,1 0,05
Рентгеноскопии
Грудная клетка 3,3
ЖКТ 20
Пищевод, желудок 3,5
Кишечник 12
Компьютерная томография (КТ)
Грудная клетка 11
Конечности 0,1
Шейный отдел позвоночника 5,0
Грудной отдел позвоночника 5,0
Поясничный отдел позвоночника 5,4
Органы малого таза, бедро 9,5
ЖКТ 14
Голова 2,0
Зубы, челюсть 0,05

Очевидно, что самую высокую лучевую нагрузку можно получить при прохождении рентгеноскопии и компьютерной томографии. В первом случае это связано с длительностью исследования. Рентгеноскопия обычно проводится в течение нескольких минут, а рентгеновский снимок делается за доли секунды. Поэтому при динамичном исследовании вы облучаетесь сильнее. Компьютерная томография предполагает серию снимков: чем больше срезов - тем выше нагрузка, это плата за высокое качество получаемой картинки. Еще выше доза облучения при сцинтиграфии, так как в организм вводятся радиоактивные элементы. Вы можете прочитать подробнее о том, чем отличаются флюорография, рентгенография и другие лучевые методы исследования.

Чтобы уменьшить потенциальный вред от лучевых исследований, существуют средства защиты. Это тяжелые свинцовые фартуки, воротники и пластины, которыми обязательно должен вас снабдить врач или лаборант перед диагностикой. Снизить риск от рентгена или компьютерной томографии можно также, разнеся исследования как можно дальше по времени. Эффект облучения может накапливаться и организму нужно давать срок на восстановление. Пытаться пройти диагностику всего тела за один день неразумно.

Как вывести радиацию после рентгена?

Обычный рентген - это воздействие на тело гамма-излучения, то есть высокоэнергетических электромагнитных колебаний. Как только аппарат выключается, воздействие прекращается, само облучение не накапливается и не собирается в организме, поэтому и выводить ничего не надо. А вот при сцинтиграфии в организм вводят радиоактивные элементы, которые и являются излучателями волн. После процедуры обычно рекомендуется пить больше жидкости, чтобы скорее избавиться от радиации.

Какова допустимая доза облучения при медицинских исследованиях?

Сколько же раз можно делать флюорографию, рентген или КТ, чтобы не нанести вреда здоровью? Есть мнение, что все эти исследования безопасны. С другой стороны, они не проводятся у беременных и детей. Как разобраться, что есть правда, а что - миф?

Оказывается, допустимой дозы облучения для человека при проведении медицинской диагностики не существует даже в официальных документах Минздрава. Количество зивертов подлежит строгому учету только у работников рентгенкабинетов, которые изо дня в день облучаются за компанию с пациентами, несмотря на все меры защиты. Для них среднегодовая нагрузка не должна превышать 20 мЗв, в отдельные годы доза облучения может составить 50 мЗв, в виде исключения. Но даже превышение этого порога не говорит о том, что врач начнет светиться в темноте или у него вырастут рога из-за мутаций. Нет, 20–50 мЗв - это лишь граница, за которой повышается риск вредного воздействия радиации на человека. Опасности среднегодовых доз меньше этой величины не удалось подтвердить за многие годы наблюдений и исследований. В тоже время, чисто теоретически известно, что дети и беременные более уязвимы для рентгеновских лучей. Поэтому им рекомендуется избегать облучения на всякий случай, все исследования, связанные с рентгеновской радиацией, проводятся у них только по жизненным показаниям.

Опасная доза облучения

Доза, за пределами которой начинается лучевая болезнь - повреждение организма под действием радиации - составляет для человека от 3 Зв. Она более чем в 100 раз превышает допустимую среднегодовую для рентгенологов, а получить её обычному человеку при медицинской диагностике просто невозможно.

Есть приказ Министерства здравоохранения, в котором введены ограничения по дозе облучения для здоровых людей в ходе проведения профосмотров - это 1 мЗв в год. Сюда входят обычно такие виды диагностики как флюорография и маммография. Кроме того, сказано, что запрещается прибегать к рентгеновской диагностике для профилактики у беременных и детей, а также нельзя использовать в качестве профилактического исследования рентгеноскопию и сцинтиграфию, как наиболее «тяжелые» в плане облучения.

Количество рентгеновских снимков и томограмм должно быть ограничено принципом строгой разумности. То есть исследование необходимо лишь в тех случаях, когда отказ от него причинит больший вред, чем сама процедура. Например, при воспалении легких приходится делать рентгенограмму грудной клетки каждые 7–10 дней до полного выздоровления, чтобы отследить эффект от антибиотиков. Если речь идет о сложном переломе , то исследование могут повторять еще чаще, чтобы убедиться в правильном сопоставлении костных отломков и образовании костной мозоли и т. д.

Есть ли польза от радиации?

Известно, что в номе на человека действует естественный радиационный фон. Это, прежде всего, энергия солнца, а также излучение от недр земли, архитектурных построек и других объектов. Полное исключение действия ионизирующей радиации на живые организмы приводит к замедлению клеточного деления и раннему старению. И наоборот, малые дозы радиации оказывают общеукрепляющее и лечебное действие. На этом основан эффект известной курортной процедуры - радоновых ванн.

В среднем человек получает около 2–3 мЗв естественной радиации за год. Для сравнения, при цифровой флюорографии вы получите дозу, эквивалентную естественному облучению за 7–8 дней в году. А, например, полет на самолете дает в среднем 0,002 мЗв в час, да еще работа сканера в зоне контроля 0,001 мЗв за один проход, что эквивалентно дозе за 2 дня обычной жизни под солнцем.

Все материалы сайта были проверены врачами. Однако, даже самая достоверная статья не позволяет учесть все особенности заболевания у конкретного человека. Поэтому информация, размещенная на нашем сайте, не может заменить визита к врачу, а лишь дополняет его. Статьи подготовлены для ознакомительных целей и носят рекомендательный характер. При появлении симптомов, пожалуйста, обратитесь к врачу.

Радиация - фактор воздействия на живые организмы, который никак ими не распознается. Даже у людей отсутствуют своеобразные рецепторы, которые бы ощущали присутствие радиационного фона. Специалисты тщательно изучили влияние излучения на здоровье и жизнь человека. Были созданы и приборы, с помощью которых можно фиксировать показатели. Дозы облучения характеризуют уровень радиации, под влиянием которой человек находился в течение года.

В чем измеряют излучение?

Во Всемирной паутине можно найти немало литературы, посвященной радиоактивному излучению. Практически в каждом источнике встречаются числовые показатели норм облучения и следствия их превышения. Разобраться в непонятных единицах измерения удается не сразу. Изобилие информации, характеризующей предельно допустимые дозы облучения населения, могут легко запутать и знающего человека. Рассмотрим понятия в минимальном и более понятном объеме.

Список величин весьма внушителен: кюри, рад, грэй, беккерель, бэр - это только основные характеристики дозы облучения. Зачем так много? Их применяют для определенных областей медицины и охраны окружающей среды. За единицу воздействия радиации на какое-либо вещество принимают поглощенную дозу - 1 грэй (Гр), равный 1 Дж/кг.

При воздействии излучения на живые организмы говорят об Она равна поглощенной тканями организма дозе в перерасчете на единицу массы, умноженной на коэффициент повреждения. Константа выделена для каждого органа своя. В результате вычислений получается число с новой единицей измерения - зиверт (Зв).

На основании уже полученных данных о влиянии принятого излучения на ткани определенного органа определяется эффективная эквивалентная доза облучения. Этот показатель вычисляется при помощи умножения предыдущего числа в зивертах на коэффициент, который учитывает разную чувствительность тканей к радиоактивному излучению. Его значение позволяет оценить с учетом биологической реакции организма количество поглощенной энергии.

Что такое допустимые дозы облучения и когда они появились?

Специалисты радиационной безопасности на основе данных о влиянии облучения на здоровье человека разработали предельно допустимые значения энергии, которые могут быть поглощены организмом без вреда. Предельно допустимые дозы (ПДД) указаны для разового или длительного облучения. При этом учитывают характеристику лиц, подвергающихся действию радиационного фона.

  • А - лица, работающие с источниками ионизирующего излучения. По ходу выполнения своих трудовых обязанностей подвергаются облучению.
  • Б - население определенной зоны, работники, чьи обязанности не связаны с получением радиации.
  • В - население страны.

Среди персонала различают две группы: работники контролируемой зоны (дозы облучения превышают 0.3 от годового ПДД) и сотрудники вне такой зоны (0.3 от ПДД не превышается). В пределах доз различают 4 типа критических органов, то есть тех, в чьих тканях наблюдается наибольшее количество разрушений в связи с ионизированным излучением. Учитывая перечисленные категории лиц среди населения и работников, а также критические органы, устанавливает ПДД.

Впервые пределы облучения появились в 1928 году. Величина годового поглощения радиационного фона составляла 600 миллизиверт (мЗв). Установлена она была для медицинских работников - рентгенологов. С изучением влияния ионизированного излучения на продолжительность и качество жизни ПДД ужесточились. Уже в 1956 году планка снизилась до 50 миллизиверт, а в 1996-м Международная комиссия по защите от радиации уменьшила ее до 20 мЗв. Стоит заметить, что при установлении ПДД в расчет не берут естественное поглощение ионизированной энергии.

Естественная радиация

Если избежать встречи с радиоактивными элементами и их излучением еще хоть как-то можно, то от природного фона никуда не скрыться. Естественное облучение в каждом из регионов имеет индивидуальные показатели. Оно было всегда и с годами никуда не пропадает, а лишь накапливается.

Уровень природной радиации зависит от нескольких факторов:

  • показателя высоты над уровнем моря (чем ниже, тем меньше фон, и наоборот);
  • структуры почвы, воды, горных пород;
  • искусственных причин (производство, АЭС).

Человек получает радиацию через продукты питания, излучение почв, солнца, при медицинском обследовании. Дополнительными источниками облучения становятся производственные предприятия, атомные станции, испытательные полигоны и пусковые аэродромы.

Специалисты считают наиболее приемлемым облучение, которое не превышает 0.2 мкЗв за один час. А верхняя граница нормы радиации определяется в 0.5 мкЗв в час. По прошествии некоторого времени непрерывного воздействия ионизированных веществ допустимые дозы облучения для человека увеличиваются до 10 мкЗв/ч.

По мнению врачей, за всю жизнь человек может получить радиацию в размере не более 100-700 миллизиверт. По факту люди, проживающие в горной местности, подвергаются излучению в несколько больших размерах. Средние показатели поглощения ионизированной энергии в год составляют около 2-3 миллизиверт.

Как именно радиация влияет на клетки?

Ряд химических соединений обладает свойством радиационного излучения. Происходит активное деление ядер атомов, что приводит к высвобождению большого количества энергии. Эта сила способна буквально вырывать электроны от атомов клеток вещества. Сам процесс получил название ионизации. Атом, который подвергся такой процедуре, изменяет свои свойства, что приводит к изменению всего строения вещества. За атомами меняются молекулы, за молекулами общие свойства живой ткани. С возрастанием уровня облучения увеличивается и количество измененных клеток, что приводит к более глобальным переменам. В связи с чем и были высчитаны допустимые дозы облучения для человека. Дело в том, что изменения в живых клетках затрагивают и молекулу ДНК. Иммунная система активно восстанавливает ткани и даже способна «починить» поврежденную ДНК. Но в случаях значительного облучения или нарушения защитных сил организма развиваются заболевания.

С точностью предположить вероятность развития болезней, возникающих на клеточном уровне, при обычном поглощении радиации сложно. Если же эффективная доза облучения (это около 20 мЗв в год для работников промышленности) превышает рекомендуемые показатели в сотни раз, общее состояние здоровья значительно снижается. Иммунная система дает сбои, что влечет за собой развитие различных заболеваний.

Огромные дозы радиации, которые могут быть получены вследствие аварии на АЭС или взрыва атомной бомбы, не всегда совместимы с жизнью. Ткани под воздействием измененных клеток погибают в большом количестве и просто не успевают восстановиться, что влечет за собой нарушение жизненно важных функций. Если часть тканей сохранится, то у человека будет шанс на выздоровление.

Показатели допустимых доз облучения

Согласно нормам радиационной безопасности, установлены предельно допустимые величины ионизирующего облучения в год. Рассмотрим приведенные показатели в таблице.

Как видно из таблицы, допустимая доза облучения в год для работников вредных производств и АЭС сильно отличается от показателей, выведенных для населения санитарно-защищенных зон. Все дело в том, что при длительном поглощении допустимого ионизирующего излучения организм справляется со своевременным восстановлением клеток без нарушения здоровья.

Разовые дозы облучения человека

Значительное увеличение радиационного фона приводит к более серьезным повреждениям тканей, в связи с чем начинают неправильно функционировать или вовсе отказывать органы. возникает лишь при получении огромного количества ионизирующей энергии. Незначительное превышение рекомендуемых доз может привести к заболеваниям, которые могут быть вылечены.

Превышающие норму дозы облучения и последствия

Разовая доза (мЗв)

Что происходит с организмом

Изменений в состоянии здоровья не наблюдаются

Снижается общее количество лимфоцитов (снижается иммунитет)

Значительное снижение лимфоцитов, признаки слабости, тошнота, рвота

В 5% случаев смертельный исход, у большинства наблюдается так называемое лучевое похмелье (признаки схожи с алкогольным похмельем)

Изменения в крови, временная мужская стерилизация, 50% смертности в течение 30 дней после облучения

Смертельная доза облучения, не подлежит лечению

Наступает кома, смерть в течение 5-30 минут

Мгновенная смерть от луча

Разовое получение большого количество радиационного излучения негативно влияет на состояние организма: клетки стремительно разрушаются, не успевая восстановиться. Чем сильнее воздействие, тем больше возникает очагов поражения.

Развитие лучевой болезни: причины

Лучевой болезнью называют общее состояние организма, вызванное влиянием радиоактивного излучения, превышающего ПДД. Поражения наблюдаются со стороны всех систем. Согласно заявлениям Международной комиссии по радиологической защите, дозы облучения, вызывающие лучевую болезнь, начинаются с показателей в 500 мЗв за один раз или более 150 мЗв в год.

Поражающее действие высокой интенсивности (более 500 мЗв разово) возникает вследствие использования атомного оружия, его испытаний, возникновения техногенных катастроф, проведения процедур интенсивного облучения при лечении онкологических, ревматологических заболеваний и болезней крови.

Развитию хронической лучевой болезни подлежат медицинские работники, находящиеся в отделении лучевой терапии и диагностике, а также пациенты, которые часто подвергаются радионуклидным и рентгенологическим исследованиям.

Классификация лучевой болезни, в зависимости от доз радиации

Болезнь характеризуют исходя из того, какую дозу ионизирующего облучения получил больной и как долго это происходило. Однократное воздействие приводит к острому состоянию, а постоянно повторяющееся, но менее массивное - к хроническим процессам.

Рассмотрим основные формы лучевой болезни, в зависимости от полученного разового облучения:

  • лучевая травма (менее 1 Зв) - возникают обратимые изменения;
  • костномозговая форма (от 1 до 6 Зв) - имеет четыре степени, в зависимости от полученной дозы. Смертность при таком диагнозе составляет более 50%. Поражаются клетки красного костного мозга. Состояние может улучшить трансплантация. Период восстановления долгий;
  • желудочно-кишечная (10-20 Зв) характеризуется тяжелым состоянием, сепсисом, кровотечениями ЖКТ;
  • сосудистая (20-80 Зв) - наблюдаются гемодинамические нарушения и тяжелая интоксикация организма;
  • церебральная (80 Зв) - летальный исход в течение 1-3 дней вследствие отека мозга.

Шанс на выздоровление и реабилитацию имеют больные с костномозговой формой (в половине случаев). Более тяжелые состояния не подлежат лечению. Смерть наступает в течение нескольких дней или недель.

Течение острой лучевой болезни

После того как была получена высокая доза излучения, и доза облучения достигла 1-6 Зв, развивается острая лучевая болезнь. Врачи разделяют состояния, которые сменяют друг друга, на 4 этапа:

  1. Первичная реактивность. Наступает в первые часы после облучения. Характеризуется слабостью, понижением артериального давления, тошнотой и рвотой. При облучении свыше 10 Зв переходит сразу в третью фазу.
  2. Латентный период. После 3-4 дней с момента облучения и до месячного срока состояние улучшается.
  3. Развернутая симптоматика. Сопровождается инфекционными, анемическими, кишечными, геморрагическими синдромами. Состояние тяжелое.
  4. Восстановление.

Острое состояние лечится в зависимости от характера клинической картины. В общих случаях назначается путем введения средств, нейтрализующих радиоактивные вещества. При надобности выполняется переливание крови, трансплантация костного мозга.

Пациенты, которым удается пережить первые 12 недель течения острой лучевой болезни, в основном имеют благоприятный прогноз. Но даже при полном восстановлении у таких людей возрастает риск развития онкологических заболеваний, а также рождения потомства с генетическими аномалиями.

Хроническая лучевая болезнь

При постоянном воздействии радиоактивного излучения в меньших дозах, но суммарно превышающих в год 150 мЗв (не считая природного фона), начинается хроническая форма лучевой болезни. Ее развитие проходит три этапа: формирование, восстановление, исход.

Первый этап протекает в течение нескольких лет (до 3). Тяжесть состояния может быть определена от легкой до тяжелой. Если изолировать пациента от места получения радиоактивного излучения, то в течение трех лет наступит фаза восстановления. После чего возможно полное выздоровление или же, наоборот, прогрессирование болезни с быстрым смертельным исходом.

Ионизированное излучение способно в мгновения разрушить клетки организма и вывести его из строя. Именно поэтому соблюдение предельных доз излучения является важным критерием работы на вредном производстве и жизни неподалеку от АЭС и испытательных полигонов.