Предметы симметричные относительно оси симметрии. Осевая и центральная симметрия

Осевая симметрия и понятие совершенства

Осевая симметрия присуща всем формам в природе и является одним из основополагающих принципов красоты. С древнейших времен человек пытался

постигнуть смысл совершенства. Впервые обосновали это понятие художники, философы и математики Древней Греции. Да и само слово "симметрия" было придумано ими. Обозначает оно пропорциональность, гармоничность и тождественность частей целого. Древнегреческий мыслитель Платон утверждал, что прекрасным может быть только тот объект, который симметричен и соразмерен. И действительно, «радуют глаз» те явления и формы, которые имеют пропорциональность и завершенность. Их мы называем правильными.

Осевая симметрия как понятие

Симметрия в мире живых существ проявляется в закономерном расположении одинаковых частей тела относительно центра или оси. Чаще в

природе встречается осевая симметрия. Она обуславливает не только общее строение организма, но и возможности его последующего развития. Геометрические формы и пропорции живых существ формирует «осевая симметрия». Определениеее формулируется следующим образом: это свойство объектов совмещаться при различных преобразованиях. Древние считали, что принципом симметричности в наиболее полном объеме обладает сфера. Эту форму они полагали гармоничной и совершенной.

Осевая симметрия в живой природе

Если взглянуть на любое живое существо, сразу бросается в глаза симметричность устройства организма. Человек: две руки, две ноги, два глаза, два уха и так далее. Каждому виду животных присущ характерный окрас. Если в расцветке фигурирует рисунок, то, как правило, он зеркально дублируется с обеих сторон. Это означает, что существует некая линия, по которой животные и люди могут быть визуально поделены на две идентичные половинки, то есть в основе их геометрического устройства лежит осевая симметрия. Любой живой организм природа создает не хаотично и бессмысленно, а согласно общим законам мироустройства, ведь во Вселенной ничто не имеет чисто эстетического, декоративного назначения. Наличие различных форм также обусловлено закономерной необходимостью.

Осевая симметрия в неживой природе

В мире нас повсюду окружают такие явления и предметы, как: тайфун, радуга, капля, листья, цветы и т.д. Их зеркальная, радиальная, центральная, осевая симметрия - очевидны. В значительной степени она обусловлена явлением гравитации. Часто под понятием симметрия понимается регулярность смены каких-либо явлений: день и ночь, зима, весна, лето и осень и так далее. Практически, это свойство существует везде, где наблюдается упорядоченность. Да и сами законы природы - биологические, химические, генетические, астрономические, подчинены общим для нас всех принципам симметрии, поскольку имеют завидную системность. Таким образом, сбалансированность, тождественность как принцип имеет всеобщий масштаб. Осевая симметрия в природе - это один из «краеугольных» законов, на котором базируется мироздание в целом.


Рассмотреть осевую и центральную симметрии как свойства некоторых геометрических фигур; Рассмотреть осевую и центральную симметрии как свойства некоторых геометрических фигур; Уметь строить симметричные точки и уметь распознавать фигуры, являющиеся симметричными относительно точки или прямой; Уметь строить симметричные точки и уметь распознавать фигуры, являющиеся симметричными относительно точки или прямой; Совершенствование навыков решения задач; Совершенствование навыков решения задач; Продолжить работу над аккуратностью записи и выполнения геометрического чертежа; Продолжить работу над аккуратностью записи и выполнения геометрического чертежа;


Устная работа «Щадящий опрос» Устная работа «Щадящий опрос» Какая точка называется серединой отрезка? Какой треугольник называется равнобедренным? Каким свойством обладают диагонали ромба? Сформулируйте свойство биссектрисы равнобедренного треугольника. Какие прямые называются перпендикулярными? Какой треугольник называется равносторонним? Каким свойством обладают диагонали квадрата? Какие фигуры называются равными?























С какими новыми понятиями на уроке познакомились? С какими новыми понятиями на уроке познакомились? Что нового узнали о геометрических фигурах? Что нового узнали о геометрических фигурах? Приведите примеры геометрических фигур, обладающих осевой симметрией. Приведите примеры геометрических фигур, обладающих осевой симметрией. Приведите пример фигур, обладающих центральной симметрией. Приведите пример фигур, обладающих центральной симметрией. Приведите примеры предметов из окружающей жизни, обладающих одной или двумя видами симметрии. Приведите примеры предметов из окружающей жизни, обладающих одной или двумя видами симметрии.

Центральная симметрия. Центральная симметрия является движением.

Картинка 9 из презентации «Виды симметрии» к урокам геометрии на тему «Симметрия»

Размеры: 1503 х 939 пикселей, формат: jpg. Чтобы бесплатно скачать картинку для урока геометрии, щёлкните по изображению правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа картинок на уроке Вы также можете бесплатно скачать презентацию «Виды симметрии.ppt» целиком со всеми картинками в zip-архиве. Размер архива - 1936 КБ.

Скачать презентацию

Симметрия

«Симметрия в природе» - В 19 веке, в Европе, появились единичные работы, посвящённые симметрии растений. . Осевая Центральная. Одним из основных свойств геометрических фигур является симметрия. Работу выполнили: Жаворонкова Таня Николаева Лера Руководитель: Артёменко Светлана Юрьевна. Под симметрией в широком смысле понимают всякую правильность во внутреннем строении тела или фигуры.

«Симметрия в искусстве» - II.1. Пропорция в архитектуре. Каждый конец пятиугольной звезды представляет собой золотой треугольник. II. Центрально-осевая симметрия присутствует чуть ли не в каждом архитектурном объекте. Площадь Вогезов в Париже. Периодичность в искусстве. Содержание. Сикстинская мадонна. Красота многогранна и многолика.

«Точка симметрии» - Кристаллы каменной соли, кварца, арагонита. Симметрия в животном мире. Примеры вышеупомянутых видов симметрии. B А О Любая точка прямой является центром симметрии. Такая фигура обладает центральной симметрией. Круглый конус обладает осевой симметрией; ось симметрии – ось конуса. Равнобочная трапеция имеет только осевую симметрию.

«Движение в геометрии» - Движение в геометрии. Как движение используется в различных сферах деятельности человека? Что называется движением? К каких науках применяется движение? Группа теоретиков. Математика красива и гармонична! Можем ли мы видеть движение в природе? Понятие движения Осевая симметрия Центральная симметрия.

«Математическая симметрия» - Симметрия. Симметрия в математике. Типы симметрии. В х и м и и. Вращательная. Математическая симметрия. Центральная симметрия. Вращательная симметрия. Физическая симметрия. Тайна зеркального мира. Однако у сложных молекул, как правило, отсутствует симметрия. ИМЕЕТ МНОГО ОБЩЕГО С ПОСТУПАТЕЛЬНОЙ СИММЕТРИЕЙ В МАТЕМАТИКЕ.

«Симметрия вокруг нас» - Центральная. Один вид симметрии. Осевая. В геометрии есть фигуры, которые имеют. Вращения. Вращения (поворотная). Симметрия на плоскости. Горизонтальная. Осевая симметрия относительно прямой. Греческое слово симметрия означает «пропорциональность», «гармония». Два вида симметрии. Центральная относительно точки.

Всего в теме 32 презентации

Понятие движения

Разберем сначала такое понятие как движение.

Определение 1

Отображение плоскости называется движением плоскости, если при этом отображении сохраняются расстояния.

Существуют несколько теорем, связанных с этим понятием.

Теорема 2

Треугольник, при движении, переходит в равный ему треугольник.

Теорема 3

Любая фигура, при движении, переходит в равную ей фигуру.

Осевая и центральная симметрия являются примерами движения. Рассмотрим их более подробно.

Осевая симметрия

Определение 2

Точки $A$ и $A_1$ называются симметричными относительно прямой $a$, если эта прямая перпендикулярна к отрезку ${AA}_1$ и проходит через его центр (рис. 1).

Рисунок 1.

Рассмотрим осевую симметрию на примере задачи.

Пример 1

Построить симметричный треугольник для данного треугольника относительно какой-либо его стороны.

Решение.

Пусть нам дан треугольник $ABC$. Будем строить его симметрию относительно стороны $BC$. Сторона $BC$ при осевой симметрии перейдет в саму себя (следует из определения). Точка $A$ перейдет в точку $A_1$ следующим образом: ${AA}_1\bot BC$, ${AH=HA}_1$. Треугольник $ABC$ перейдет в треугольник $A_1BC$ (Рис. 2).

Рисунок 2.

Определение 3

Фигура называется симметричной относительно прямой $a$, если каждая симметричная точка этой фигуры содержится на этой же фигуре (рис. 3).

Рисунок 3.

На рисунке $3$ изображен прямоугольник. Он обладает осевой симметрией относительно каждого своего диаметра, а также относительно двух прямых, которые проходят через центры противоположных сторон данного прямоугольника.

Центральная симметрия

Определение 4

Точки $X$ и $X_1$ называются симметричными относительно точки $O$, если точка $O$ является центром отрезка ${XX}_1$ (рис. 4).

Рисунок 4.

Рассмотрим центральную симметрию на примере задачи.

Пример 2

Построить симметричный треугольник для данного треугольника какой-либо его вершины.

Решение.

Пусть нам дан треугольник $ABC$. Будем строить его симметрию относительно вершины $A$. Вершина $A$ при центральной симметрии перейдет в саму себя (следует из определения). Точка $B$ перейдет в точку $B_1$ следующим образом ${BA=AB}_1$, а точка $C$ перейдет в точку $C_1$ следующим образом: ${CA=AC}_1$. Треугольник $ABC$ перейдет в треугольник ${AB}_1C_1$ (Рис. 5).

Рисунок 5.

Определение 5

Фигура является симметричной относительно точки $O$, если каждая симметричная точка этой фигуры содержится на этой же фигуре(рис. 6).

Рисунок 6.

На рисунке $6$ изображен параллелограмм. Он обладает центральной симметрией относительно точки пересечения его диагоналей.

Пример задачи.

Пример 3

Пусть нам дан отрезок $AB$. Построить его симметрию относительно прямой $l$, не пересекающий данный отрезок и относительно точки $C$, лежащей на прямой $l$.

Решение.

Изобразим схематически условие задачи.

Рисунок 7.

Изобразим для начала осевую симметрию относительно прямой $l$. Так как осевая симметрия является движением, то по теореме $1$, отрезок $AB$ отобразится на равный ему отрезок $A"B"$. Для его построение сделаем следующее: проведем через точки $A\ и\ B$ прямые $m\ и\ n$, перпендикулярно прямой $l$. Пусть $m\cap l=X,\ n\cap l=Y$. Далее проведем отрезки $A"X=AX$ и $B"Y=BY$.

Рисунок 8.

Изобразим теперь центральную симметрию относительно точки $C$. Так как центральная симметрия является движением, то по теореме $1$, отрезок $AB$ отобразится на равный ему отрезок $A""B""$. Для его построения сделаем следующее: проведем прямые $AC\ и\ BC$. Далее проведем отрезки $A^{""}C=AC$ и $B^{""}C=BC$.

Рисунок 9.

Цели:

  • образовательные:
    • дать представление о симметрии;
    • познакомить с основными видами симметрии на плоскости и в пространстве;
    • выработать прочные навыки построения симметричных фигур;
    • расширить представления об известных фигурах, познакомив со свойствами, связанных с симметрией;
    • показать возможности использования симметрии при решении различных задач;
    • закрепить полученные знания;
  • общеучебные:
    • научить настраивать себя на работу;
    • научить вести контроль за собой и соседом по парте;
    • научить оценивать себя и соседа по парте;
  • развивающие:
    • активизировать самостоятельную деятельность;
    • развивать познавательную деятельность;
    • учить обобщать и систематизировать полученную информацию;
  • воспитательные:
    • воспитываать у учащихся “чувство плеча”;
    • воспитывать коммуникативность;
    • прививать культуру общения.

ХОД УРОКА

Перед каждым лежат ножницы и лист бумаги.

Задание 1 (3 мин).

– Возьмем лист бумаги, сложим его попалам и вырежем какую-нибудь фигурку. Теперь развернем лист и посмотрим на линию сгиба.

Вопрос: Какую функцию выполняет эта линия?

Предполагаемый ответ: Эта линия делит фигуру пополам.

Вопрос: Как расположены все точки фигуры на двух получившихся половинках?

Предполагаемый ответ: Все точки половинок находятся на равном расстоянии от линии сгиба и на одном уровне.

– Значит, линия сгиба делит фигурку пополам так, что 1 половинка является копией 2 половинки, т.е. эта линия непростая, она обладает замечательным свойством (все точки относительно ее находятся на одинаковом расстоянии), эта линия – ось симметрии.

Задание 2 (2 мин).

– Вырезать снежинку, найти ось симметрии, охарактеризовать ее.

Задание 3 (5 мин).

– Начертить в тетради окружность.

Вопрос: Определить, как проходит ось симметрии?

Предполагаемый ответ: По-разному.

Вопрос: Так сколько осей симметрии имеет окружность?

Предполагаемый ответ: Много.

– Правильно, окружность имеет множество осей симметрии. Такой же замечательной фигурой является шар (пространственная фигура)

Вопрос: Какие еще фигуры имеют не одну ось симметрии?

Предполагаемый ответ: Квадрат, прямоугольник, равнобедренный и равносторонний треугольники.

– Рассмотрим объемные фигуры: куб, пирамиду, конус, цилиндр и т.д. Эти фигуры тоже имеют ось симметрии.Определите, сколько осей симметрии у квадрата, прямоугольника, равностороннего треугольника и у предложенных объемных фигур?

Раздаю учащимся половинки фигурок из пластилина.

Задание 4 (3 мин).

– Используя полученную информацию, долепить недостающую часть фигурки.

Примечание: фигурка может быть и плоскостной, и объемной. Важно, чтобы учащиеся определили, как проходит ось симметрии, и долепили недостающий элемент. Правильность выполнения определяет сосед по парте, оценивает, насколько правильно проделана работа.

Из шнурка одного цвета на рабочем столе выложена линия (замкнутая, незамкнутая, с самопересечением, без самопересечения).

Задание 5 (групповая работа 5 мин).

– Определить визуально ось симметрии и относительно нее достроить из шнурка другого цвета вторую часть.

Правильность выполненной работы определяется самими учениками.

Перед учащимися представлены элементы рисунков

Задание 6 (2 мин).

– Найдите симметричные части этих рисунков.

Для закрепления пройденного материала предлагаю следующие задания, предусмотренные на 15 мин.:

Назовите все равные элементы треугольника КОР и КОМ. Каков вид этих треугольников?

2. Начертите в тетради несколько равнобедренных треугольников с общим основанием равным 6 см.

3. Начертите отрезок АВ. Постройте прямую перпендикулярную отрезку АВ и проходящую через его середину. Отметьте на ней точки С и D так, чтобы четырехугольник АСВD был симметричен относительно прямой АВ.

– Наши первоначальные представления о форме относятся к очень отдаленной эпохе древнего каменного века – палеолита. В течение сотен тысячелетий этого периода люди жили в пещерах, в условиях мало отличавшихся от жизни животных. Люди изготовляли орудия для охоты и рыболовства, вырабатывали язык для общения друг с другом, а в эпоху позднего палеолита украшали свое существование, создавая произведения искусства, статуэтки и рисунки, в которых обнаруживается замечательное чувство формы.
Когда произошел переход от простого собирания пищи к активному ее производству, от охоты и рыболовства к земледелию, человечество вступает в новый каменный век, в неолит.
Человек неолита обладал острым чувством геометрической формы. Обжиг и раскраска глиняных сосудов, изготовление камышовых циновок, корзин, тканей, позже – обработка металлов вырабатывали представления о плоскостных и пространственных фигурах. Неолитические орнаменты радовали глаз, выявляя равенство и симметрию.
– А где в природе встречается симметрия?

Предполагаемый ответ: крылья бабочек, жуков, листья деревьев…

– Симметрию можно наблюдать и в архитектуре. Строя здания, строители четко придерживаются симметрии.

Поэтому здания получаются такие красивые. Также примером симметрии служит человек, животные.

Задание на дом:

1. Придумать свой орнамент, изобразить его на листе формат А4 (можно нарисовать в виде ковра).
2. Нарисовать бабочек, отметить, где присутствуют элементы симметрии.