Презентация к уроку по физике (9 класс) на тему: Распространение колебаний в упругих средах. Волны

Пусть колеблющееся тело находится в среде, все частицы которой связаны между собой. Соприкасающиеся с ним частицы среды придут в колебательное движение, в результате чего в прилегающих к этому телу участках среды возникают периодические деформации (например, сжатие и растяжение). При деформациях в среде появляются упругие силы, которые стремятся вернуть частицы среды в первоначальное состояние равновесия.

Таким образом, периодические деформации, которые появились в каком-нибудь месте упругой среды, будут распространяться с некоторой скоростью, зависящей от свойств среды. При этом частицы среды не вовлекаются волной в поступательное движение, а совершают колебательные движения около своих положений равновесия, от одних участков среды к другим передается только упругая деформация.

Процесс распространения колебательного движения в среде называется волновым процессом или просто волной . Иногда эту волну называют упругой, потому что она обусловлена упругими свойствами среды.

В зависимости от направления колебаний частиц по отношению к направлению распространения волны, различают продольные и поперечные волны. Интерактивная демонстрация поперечной и продольной волны









Продольная волна это волна, в которой частицы среды колеблются вдоль направления распространения волны.



Продольную волну можно наблюдать на длинной мягкой пружине большого диаметра. Ударив по одному из концов пружины, можно заметить, как по пружине будут распространяться последовательные сгущения и разрежения ее витков, бегущие друг за другом. На рисунке точками показано положение витков пружины в состоянии покоя, а затем положения витков пружины через последовательные промежутки времени, равные четверти периода.


Таким образом, про дольная волна в рассматриваемом случае представляет собой чередующиеся сгущения (Сг) и разрежения (Раз) витков пружины .
Демонстрация распространения продольной волны


Поперечная волна - это волна, в которой частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны.


Рассмотрим подробнее процесс образования поперечных волн. Возьмем в качестве модели реального шнура цепочку шариков (материальных точек), связанных друг с другом упругими силами. На рисунке изображен процесс распространения поперечной волны и показаны положения шариков через последовательные промежутки времени, равные четверти периода.

В начальный момент времени (t 0 = 0) все точки находятся в состоянии равновесия. Затем вызываем возмущение, отклонив точку 1 от положения равновесия на величину А и 1-я точка начинает колебаться, 2-я точка, упруго связанная с 1-й, приходит в колебательное движение несколько позже, 3-я - еще позже и т.д. Через четверть периода колебания ( t 2 = T 4 ) распространятся до 4-й точки, 1-я точка успеет отклониться от своего положения равновесия на максимальное расстояние, равное амплитуде колебаний А. Через половину периода 1-я точка, двигаясь вниз, возвратится в положение равновесия, 4-я отклонилась от положения равновесия на расстояние, равное амплитуде колебаний А, волна распространилась до 7-й точки и т.д.

К моменту времени t 5 = T 1-я точка, совершив полное колебание, проходит через положение равновесия, а колебательное движение распространится до 13-й точки. Все точки от 1-й до 13-й расположены так, что образуют полную волну, состоящую из впадины и гребня.

Демонстрация распространения поперечной волны

Вид волны зависит от вида деформации среды. Продольные волны обусловлены деформацией сжатия - растяжения, поперечные волны - деформацией сдвига. Поэтому в газах и жидкостях, в которых упругие силы возникают только при сжатии, распространение поперечных волн невозможно. В твердых телах упругие силы возникают и при сжатии (растяжении) и при сдвиге, поэтому в них возможно распространение как продольных, так и поперечных волн.

Как показывают рисунки, и в поперечной и в продольной волнах каждая точка среды колеблется около своего положения равновесия и смещается от него не более чем на амплитуду, а состояние деформации среды передается от одной точки среды к другой. Важное отличие упругих волн в среде от любого другого упорядоченного движения ее частиц заключается в том, что распространение волн не связано с переносом вещества среды.

Следовательно, при распространении волн происходит перенос энергии упругой деформации и импульса без переноса вещества. Энергия волны в упругой среде состоит из кинетической энергии совершающих колебания частиц и из потенциальной энергии упругой деформации среды.


ОК-9 Распространение колебаний в упругой среде

Волновое движение - механические волны, т. е. волны, которые распространяются только в веществе (морские, звуковые, волны в струне, волны землетрясений). Источниками волн являются колебания вибратора.

Вибратор - колеблющееся тело. Создает колебания в упругой среде.

Волной называются колебания, распространяющиеся в пространстве с течением времени.

Волновая поверхность - геометрическое место точек среды, колеблющихся в одинаковых фазах

Л
уч
- линия, касательная к которой в каждой точке совпадает с направлением распространения волны.

Причина возникновения волн в упругой среде

Если вибратор колеблется в упругой среде, то он воздействует на частицы среды, заставляя их совершать вынужденные колебания. За счет сил взаимодействия между частицами среды колебания передаются от одной частицы к другой.

Т
ипы волн

Поперечные волны

Волны, в которых колебания частиц среды происходят в плоскости, перпендикулярной направлению распространения волны. Возникают в твердых телах и на поверхности поды.

П
родольные волны

Колебания происходят вдоль распространения волны. Могут возникать в газах, жидкостях и твердых телах.

Поверхностные волны

В
олны, которые распространяются на границе раздела двух сред. Волны на границе между водой и воздухом. Еслиλ меньше глубины водоема, то каждая частица воды на поверхности и вблизи от нее движется по эллипсу, т.е. представляет собой комбинацию колебаний в продольном и поперечном направлениях. У дна же наблюдается чисто продольное движение.

Плоские волны

Волны, у которых волновые поверхности являются плоскостями, перпендикулярными на правлению распространения волн.

Сферические волны

Волны, у которых волновые поверхности являются сферами. Сферы волновых поверхностей концентрические.

Характеристики волнового движения


Длина волны

Наименьшее расстояние между двумя гонками, колеблющимися в одной фазе, называется длиной волны. Зависит только от среды, в которой распространяется волна, при равных частотах вибратора.

Частота

Частота ν волнового движения зависит только от частоты вибратора.

Скорость распространения волны

Скорость v=λν . Так как
, то
. Однако скорость распространения волны зависит от вида вещества и его состояния; отν иλ , не зависит.

В идеальном газе
, гдеR - газовая постоянная;М - молярная масса;Т - абсолютная температура;γ - постоянная для данного газа;ρ - плотность вещества.

В твердых телах поперечные волны
, гдеN - модуль сдвига; продольные волны
, гдеQ - модуль всестороннего сжатия. В твердых стержнях
гдеЕ - модуль Юнга.

В твердых телах распространяются как поперечные, так и продольные волны с разными скоростями. На этом основан способ определения эпицентра землетрясения.

Уравнение плоской волны

Его вид x =x 0 sinωt (t l /v) =x 0 sin(ωt kl ), гдеk = 2π /λ - волновое число;l - расстояние, пройденное волной от вибратора до рассматриваемой точкиА .

Запаздывание по времени колебаний точек среды:
.

Запаздывание по фазе колебаний точек среды:
.

Разность фаз двух колеблющихся точек: ∆φ =φ 2 −φ 1 = 2π (l 2 −l 1)/λ .

Энергия волны

Волны переносят энергию от одной колеблющейся частицы к другой. Частицы совершают только колебательные движения, но не движутся вместе с волной: E =E к +E п,

где E к - кинетическая энергия колеблющейся частицы;E п - потенциальная энергия упругой деформации среды.

В некотором объеме V упругой среды, в которой распространяется волна с амплитудойх 0 и циклической частотойω , имеется средняя энергияW , равная
, гдеm - масса выделенного объема среды.

Интенсивность волны

Физическая величина, которая равна энергии, переносимой волной за единицу времени через единицу площади поверхности перпендикулярно направлению распространения волны, называется интенсивностью волны:
. Известно, чтоW иj ~.

Мощность волны

Если S - поперечная площадь поверхности, через которую волной переносится энергия, аj - интенсивность волны, то мощность волны равна:p =jS .

ОК-10 Звуковые волны

Упругие волны, вызывающие у человека ощущение звука, называются звуковыми волнами.

16 –2∙10 4 Гц - слышимые звуки;

меньше 16 Гц - инфразвуки;

больше 2∙10 4 Гц - ультразвуки.

О
бязательное условие для возникновения звуковой волны - наличие упругой среды.

М
еханизм возникновения звуковой волны аналогичен возникновению механической волны в упругой среде. Совершая колебания в упругой среде, вибратор воздействует на частицы среды.

Звук создают долговременные периодические источники звука. Например, музыкальный: струна, камертон, свист, пение.

Шум создают долговременные, но не периодические источники звука: дождь, море, толпа.

Скорость звука

Зависит от среды и ее состояния, как и для любой механической волны:

.

При t = 0°Сv воды = 1430 м/с,v стали = 5000 м/с,v воздуха = 331 м/с.

Приемники звуковых волн

1. Искусственные: микрофон преобразует механические звуковые колебания в электрические. Характеризуются чувствительностью σ :
,σ зависит отν з.в. .

2. Естественные: ухо.

Его чувствительность воспринимает звук при ∆p = 10 −6 Па.

Чем меньше частота ν звуковой волны, тем меньше чувствительностьσ уха. Еслиν з.в. уменьшается от 1000 до 100 Гц, тоσ уха уменьшается в 1000 раз.

Исключительная избирательность: дирижер улавливает звуки отдельных инструментов.

Физические характеристики звука

Объективные

1. Звуковое давление - давление, оказываемое звуковой волной на стоящее перед ней препятствие.

2. Спектр звука - разложение сложной звуковой волны на составляющие ее частоты.

3. Интенсивность звуковой волны:
, гдеS - площадь поверхности;W - энергия звуковой волны;t - время;
.

Субъективные

Громкость, как и высота, звука связана с ощущением, возникающим в сознании человека, а также с интенсивностью волны.

Человеческое ухо способно воспринимать звуки интенсивностью от 10 −12 (порог слышимости) до 1(порог болевого ощущения).

Г

ромкость не является прямо пропорциональной величиной интенсивности. Чтобы получить звук в 2 раза большей громкости, надо интенсивность увеличить в 10 раз. Волна, имеющая интенсивность 10 −2 Вт/м 2 , звучит в 4 раза громче, чем волна интенсивностью 10 −4 Вт/м 2 . Из-за этого соотношения между объективным ощущением громкости и интенсивностью звука используют логарифмическую шкалу.

Единицей этой шкалы является бел (Б) или децибел (дБ), (1 дБ = 0,1 Б), названная в честь физика Генриха Бела. Уровень громкости выражается в белах:
, гдеI 0 = 10 −12 порог слышимости (усредненный).

Е
слиI = 10 −2 , то
.

Громкие звуки вредны для нашего организма. Санитарная норма равна 30–40 дБ. Это громкость спокойной тихой беседы.

Шумовая болезнь: высокое артериальное давление крови, нервная возбудимость, тугоухость, быстрая утомляемость, плохой сон.

Интенсивность и громкость звука от различных источников: реактивный самолет - 140 дБ, 100 Вт/м 2 ; рок-музыка в закрытом помещении - 120 дБ, 1 Вт/м 2 ; обычный разговор (50 см от него) - 65 дБ, 3,2∙10 −6 Вт/м 2 .

Высота звука зависит от частоты колебаний: чем >ν , тем выше звук.

Т
ембр звука
позволяет различать два звука одинаковой высоты и громкости, издаваемых различными инструментами. Он зависит от спектрального состава.

Ультразвук

Применяется: эхолот для определения глубины моря, приготовление эмульсий (вода, масло), отмывка деталей, дубление кожи, обнаружение дефектов в металлических изделиях, в медицине и др.

Распространяется на значительные расстояния в твердых телах и жидкостях. Переносит энергию значительно большую, чем звуковая волна.

Твердые, жидкие, газообразные тела больших размеров можно рассматривать как среду, состоящую из отдельных частиц, взаимодействующих между собой силами связи. Возбуждение колебаний частиц среды в одном месте вызывает вынужденные колебания соседних частиц, те в свою очередь возбуждают колебания следующие и т. д.

Процесс распространения колебаний в пространстве называется волной.

Возьмем длинный резиновый шнур и заставим один конец шнура совершать вынужденные колебания в вертикальной плоскости. Силы упругости, действующие между отдельными частями шнура, приведут к распространению колебаний вдоль шнура, и мы увидим волну, бегущую вдоль шнура.

Другой пример механических волн - волны на поверхности воды.

При распространении волн в шнуре или на поверхности воды колебания происходят перпендикулярно направлению распространения волн. Волны, в которых колебания происходят перпендикулярно направлению распространения, называются поперечными волнами.

Продольные волны.

Не всякие волны можно увидеть. После удара молотком по ветви камертона мы слышим звук, хотя никаких волн в воздухе не видим. Ощущение звука в наших органах слуха возникает при периодическом изменении давления воздуха. Колебания ветви камертона сопровождаются периодическими сжатиями и разрежениями воздуха вблизи нее. Эти процессы сжатия и разрежения распространяются

в воздухе во все стороны (рис. 220). Они и являются звуковыми волнами.

При распространении звуковой волны частицы среды совершают колебания вдоль направления распространения колебаний. Волны, в которых колебания происходят вдоль направления распространения волны, называют продольными волнами.

Продольные волиы могут возникать в газах, жидкостях и твердых телах; поперечные волны распространяются в твердых телах, в которых возникают силы упругости при деформации сдвига или под действием сил поверхностного натяжения и силы тяжести.

Как в поперечных, так и в продольных волнах процесс распространения: колебаний, не сопровождается переносом вещества в направлении распространения волны. В каждой точке пространства частицы лишь совершают колебания относительно положения равновесия. Но распространение колебаний сопровождается передачей энергии колебаний от одной точки среды к другой.

Длина волны.

Скорость распространения волны. Скорость распространения колебаний в пространстве называется скоростью волны. Расстояние между ближайшими друг к другу точками, колеблющимися в одинаковых фазах (рис. 221), называется длиной волны. Связь между длиной волны К, скоростью волны и периодом колебаний Г дается выражением

Так как то скорость волны связана с частотой колебаний уравнением

Зависимость скорости распространения волн от свойств среды.

При возникновении волн их частота определяется частотой колебаний источника волн, а скорость зависит от свойств среды. Поэтому волны одной и той же частоты имеют различную длину в разных средах.

Начнем с определения упругой среды. Как можно заключить из названия упругая среда это такая среда в которой действуют силы упругости. Применительно к нашим целям, добавим, что при любом возмущении этой среды (не эмоциональной бурной реакции, а отклонении параметров среды в каком то месте от равновесных) в ней возникают силы, стремящиеся вернуть нашу среду в первоначальное равновесное состояние. При этом мы будем рассматривать протяженные среды. Насколько протяженные это мы уточним в дальнейшем, а пока будем считать, что этого достаточно. Например представим себе длинную пружину, закрепленную с обоих концов. Если в некотором месте пружины сжать несколько витков, то сжатые витки будут стремиться расжаться, а соседние витки, которые оказались растянутыми, будут стремиться сжаться. Таким образом наша упругая среда – пружина будет стараться придти в первоначальное спокойное (невозмущенное) состояние.

Газы, жидкости, твердые тела представляют собой упругие среды. Важным в предыдущем примере является то обстоятельство, что сжатый участок пружины действует на соседние участки, или по ученому говоря, передает возмущение. Похожим образом и в газе, создавая в каком то месте например область пониженного давления, соседние области, стремясь выровнять давление, будут передавать возмущение уже своим соседям, те в свою очередь своим и так далее.

Пара слов о физических величинах. В термодинамике как правило состояние тела определяется общими для всего тела параметрами, давлением газа, его температурой и плотностью. Теперь же нас будет интересовать локальное распределение этих величин.

Если колеблющееся тело (струна, мембрана и т. д.) находится в упругой среде (газ как мы уже знаем это упругая среда), то оно приводит в колебательное движение соприкасающиеся с ним частицы среды. Вследствие этого в прилегающих к телу элементах среды возникают периодические деформации (например, сжатия и разряжения). При этих деформациях в среде появляются упругие силы, стремящиеся вернуть элементы среды к первоначальным состояниям равновесия; благодаря взаимодействию соседних элементов среды упругие деформации будут передаваться от одних участков среды к другим, более удаленным от колеблющегося тела.

Таким образом, периодические деформации, вызванные в каком-нибудь месте упругой среды, будут распространяться в среде с некоторой скоростью, зависящей от ее физических свойств. При этом частицы среды совершают колебательные движения около положений равновесия; от одних участков среды к другим передается только состояние деформации.

Когда рыба «клюет» (дергает за крючок), то от поплавка по поверхности воды разбегаются круги. Вместе с поплавком смещаются соприкасающиеся с ним частицы воды, которые вовлекают в движение ближайшие к ним другие частицы и так далее.

Такое же явление происходит с частицами натянутого резинового шнура, если один его конец привести в колебание (рис. 1.1).

Распространение колебаний в среде называют волновым движением Рассмотрим подробнее, как возникает волна на шнуре. Если зафиксировать положения шнура через каждые 1/4 Т (Т - это период, с которым на рис.1.1 колеблется рука) после начала колебаний его первой точки, то получится картина, показанная на рис. 1.2, б-д. Положение а соответствует началу колебаний первой точки шнура. Десять его точек помечены цифрами, а пунктирные прямые показывают, где находятся одни и те же точки шнура в разные моменты времени.

Через 1/4 Т после начала колебания точка 1 занимает крайнее верхнее положение, а точка 2 только начинает свое движение. Поскольку каждая последующая точка шнура начинает свое движение позже предыдущей, то в промежутке 1-2 точки располагаются, как показано на рис. 1.2, б. Еще через 1/4 Т точка 1 займет положение равновесия и будет двигаться вниз, а верхнее положение займет точка 2 (положение в). Точка 3 в этот момент только начинает свое движение.

За целый период колебания распространяются до точки 5 шнура (положение д). По окончании периода Т точка 1, двигаясь вверх, начнет свое второе колебание. Одновременно с ней начнет двигаться вверх и точка 5, совершая свое первое колебание. В дальнейшем эти точки будут иметь одинаковые фазы колебаний. Совокупность точек шнура в интервале 1-5 образует волну. Когда точка 1 закончит второе колебание, на шнуре вовлекутся в движение еще точки 5-10, т. е. образуется вторая волна.

Если проследить за положением точек, имеющих одинаковую фазу, то будет видно, что фаза как бы переходит от точки к точке и движется вправо. Действительно, если в положении б фазу 1/4 имеет точка 1, то в положении в эту же фазу имеет точка 2 и т. д.

Волны, в которых происходит перемещение фазы с определенной скоростью, называют бегущими. При наблюдении за волнами видно именно распространение фазы, например движение гребня волны. Отметим, что все точки среды в волне колеблются около своего положения равновесия и вместе с фазой не перемещаются.

Процесс распространения колебательного движения в среде называется волновым процессом или просто волной .

В зависимости от характера возникающих при этом упругих деформаций различают волны продольные и поперечные . В продольных волнах частицы среды колеблются вдоль линии, совпадающей с направлением распространения колебаний. В поперечных волнах частицы среды колеблются перпендикулярно к направлению распространения волны. На рис. 1.3 показано расположение частиц среды (условно изображенных в виде черточек) в продольных (а) и поперечных (б) волнах.

Жидкие и газообразные среды не имеют упругости сдвига и поэтому в них возбуждаются только продольные волны, распространяющиеся в виде чередующихся сжатий и разрежений среды. Волны, возбуждаемые на поверхности поды, являются поперечными: они обязаны своим существованием земному тяготению. В твердых телах могут быть вызваны и продольные и поперечные волны; частным видом поперечных воли являются крутильные, возбуждаемые в упругих стержнях, к которым приложены крутильные колебания.

Предположим, что точечный источник волны начал возбуждать в среде колебания в момент времени t = 0; по истечении времени t это колебание распространится по различным направлениям на расстоянии r i =c i t , где с i - скорость волны в данном направлении.

Поверхность, до которой доходит колебание в некоторый момент времени, называется фронтом волны.

Понятно, что фронт волны (волновой фронт) перемещается со временем в пространстве.

Форма фронта волны определяется конфигурацией источника колебаний и свойствами среды. В однородных средах скорость распространения волны везде одинакова. Среда называется изотропной , если эта скорость одинакова по всем направлениям. Фронт волны от точечного источника колебаний в однородном и изотропной среде имеет вид сферы; такие волны называются сферическими .

В неоднородной и не изотропной (анизотропной ) среде, а также от неточечных источников колебаний фронт волны имеет сложную форму. Если фронт волны представляет собой плоскость и эта форма сохраняется по мере распространения колебаний в среде, то волну называют плоской . Малые участки фронта волны сложной формы можно считать плоской волной (если только рассматривать небольшие расстояния, проходимые этой волной).

При описании волновых процессов выделяют поверхности, в которых все частицы колеблются в одинаковой фазе; эти «поверхности одинаковой фазы» называются волновыми, или фазовыми.

Ясно, что фронт волны представляет собой переднюю волновую поверхность, т.е. наиболее удаленную от источника, создающего волны, и волновые поверхности также могут быть сферическими, плоскими или иметь сложную форму в зависимости от конфигурации источника колебаний и свойств среды. На рис. 1.4 условно показаны: I - сферическая волна от точечного источника, II – волна от колеблющейся пластинки, III - эллиптическая волна от точечного источника в анизотропной среде, в которой скорость распространения волны с плавно изменяется по мере возрастания угла α, достигая максимума вдоль направления АА и минимума вдоль ВВ.

Среда называется упругой, если между ее частицами существуют силы взаимодействия, препятствующие какой-либо деформации этой среды. Когда какое-либо тело совершает колебания в упругой среде, то оно воздействует на частицы среды, прилегающие к телу, и заставляет их совершать вынужденные колебания. Среда вблизи колеблющегося тела деформируется, и в ней возникают упругие силы. Эти силы воздействуют на все более удаленные от тела частицы среды, выводя их из положения равновесия. Постепенно все частицы среды вовлекаются в колебательное движение.

Тела, которые вызывают распространяющиеся в среде упругие волны, являются источниками волн (колеблющиеся камертоны, струны музыкальных инструментов).

Упругими волнами называются механические возмущения (деформации), производимые источниками, которые распространяются в упругой среде. Упругие волны в вакууме распространяться не могут.

При описании волнового процесса среду считают сплошной и непрерывной, а ее частицами являются бесконечно малые элементы объема (достаточно малые по сравнению с длиной волны), в которых находится большое количество молекул. При распространении волны в сплошной среде частицы среды, участвующие в колебаниях, в каждый момент времени имеют определенные фазы колебания.

Геометрическое место точек среды, колеблющихся в одинаковых фазах, образует волновую поверхность.

Волновую поверхность, отделяющую колеблющиеся частицы среды от частиц, еще не начавших колебаться, называют фронтом волны В зависимости от формы фронта волны различают волны плоские, сферические и др.

Линия, проведенная перпендикулярно волновому фронту в направлении распространения волны, называется лучом. Луч указывает направление распространения волны.;;

В плоской волне волновые поверхности представляют собой плоскости, перпендикулярные к направлению распространения волны (рис. 15.1). Плоские волны можно получить на поверхности воды в плоской ванночке с помощью колебаний плоского стержня.

В сферической волне волновые поверхности представляют собой концентрические сферы. Сферическую волну может создать пульсирующий в однородной упругой среде шар. Такая волна распространяется с одинаковой скоростью по всем направлениям. Лучами являются радиусы сфер (рис. 15.2).