Расчет общего освещения бжд. Расчёт заземления

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Брянский государственный

технический университет

Кафедра: “БЖД”

Расчетно-графическая работа №1

“Расчёт заземления”

Вариант №4

Студент гр. 03-В

Козин В.А.

Преподаватель

Зайцева Е.М.

Брянск 2007


Введение

1. Устройство заземления 2. Нормирование параметров защитного заземления 3. Расчет заземления Вывод

Приложение


Введение

Для защиты работающих от опасности поражения электрическим током при переходе напряжения на металлические нетоковедущие части (например, при коротком замыкании), нормально не находящиеся под напряжением, применяют защитное заземление. Защитное заземление -преднамеренное соединение нетоковедущих частей электрооборудования, которые могут случайно оказаться под напряжением, с заземляющим устройством.

Защитное заземление представляет собой систему металлических заземлителей, помещенных в землю и электрически соединенных специальными проводами с металлическими частями электрооборудования, нормально не находящимися под напряжением.

Защитное заземление эффективно защищает человека от опасности поражения электрическим током в сетях напряжения до 1000 В с изолированной нейтралью и в сетях напряжением выше 1000 В - с любым режимом нейтрали.


1. Устройство заземления

Заземление устроено в соответствии с требованиями ПУЭ, СНиП-Ш-33-76 и инструкции по устройству сетей заземления и зануления в электроустановках (СН 102-76).

Заземление следует выполнять:

а)при напряжениях переменного тока 380 В и выше и постоянного
тока 440 В и выше во всех электроустановках;

б)при напряжениях переменного тока выше 42 В и постоянного тока выше 110 В только в электроустановках, размещенных в помещениях с повышенной опасностью и в особо опасных, а также в наружных установках;

в)при любом напряжении переменного тока и постоянного тока во
взрывоопасных установках;

Заземлители могут быть использованы как естественные, так и искусственные. Причём, если естественные заземлители имеют сопротивление растеканию, удовлетворяющие требованиям ПУЭ, то устройство искусственным заземлителями не требуется.

В качестве естественных заземлителей могут быть использованы:

а) проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих и легковоспламеняющихся жидкостей, горючих или взрывчатых газов и смесей;

б) обсадные трубы, металлические и железобетонные конструкции зданий и сооружений, находящиеся в непосредственном соприкосновении с землёй;

в) свинцовые оболочки кабелей, проложенных в земле и т.д.

В качестве искусственных заземлителей чаще всего применяют угловую сталь 60x60 мм, стальные трубы диаметром 35-60 мм и стальные шины сечением не менее 100 мм 2 .

Стержни длиной 2,5...3м погружаются (забиваются) в грунт вертикально в специально подготовленной траншее (рис.1).

Вертикальные заземлители соединяются стальной полосой, которая приваривается к каждому заземлителю.

По расположению заземлителей относительно заземляемого оборудования системы заземления делят на выносное и контурное.

Выносное заземление оборудования показано на рис.2. При выносной системе заземления заземлители располагаются на некотором удалении от заземляемого оборудования. Поэтому заземленное оборудование находится вне поля растекания тока и человек, касаясь его, окажется под полным напряжением относительно земли

Выносное заземление защищает только за счёт малого сопротивления грунта.


Контурное заземление показано на рис. 3. Заземлители располагаются по контуру заземляемого оборудования на небольшом (несколько метров) расстоянии друг от друга. В данном случае поля растекания заземлителей накладываются, и любая точка поверхности земли внутри контура имеет значительный потенциал. Напряжение прикосновения будет меньше, чем при выносном заземлении.

Где потенциал земли.

2. Нормирование параметров защитного заземления

Защитное заземление предназначено для обеспечения безопасности человека при прикосновении к нетоковедущим частям оборудования, случайно оказавшимся под напряжением, и при воздействии напряжения шага. Эти величины не должны превосходить длительно допустимых.

В ПУЭ нормируются сопротивления заземления в зависимости от напряжения электроустановок.

В электроустановках напряжением до 1000 В сопротивление заземляющего устройства должно быть не выше 4 Ом; если же суммарная мощность источников не превышает 100 кВА, сопротивление заземления должно быть не более 10 Ом.

В электроустановках 1000 В с током замыкания 500 А допускается сопротивление заземления но не более 10 Ом.

Если заземляющее устройство используется одновременно для электроустановок напряжением до 1000 В и выше 1000 В, то но не выше нормы электроустановки (4 или 10 Ом). В электроустановках с токами замыкания 500 A, O,5 Ом.

3. Расчет заземления

Расчет заземления сводится к определению числа заземлителей и длины соединительной полосы исходя из допустимого сопротивления заземления.

Исходные данные


1. В качестве заземлителя выбираем стальную трубу диаметром , а в качестве соединительного элемента – стальную полосу шириной .

2. Выбираем значение удельного сопротивления грунта соответствующее или близкое по значению удельному сопротивлению грунта в заданном районе размещения проектируемой установки.

3. Определяем значение электрического сопротивления растеканию тока в землю с одиночного заземлителя

где - удельное сопротивление грунта,

Коэффициент сезонности,

Длина заземлителя,

Диаметр заземлителя,

Расстояние от поверхности грунта до середины заземлителя.

4. Рассчитываем число заземлителей без учета взаимных помех, оказываемых заземлителями друг на друга, так называемого явления взаимного “экранирования”

≈ 10.

5. Рассчитываем число заземлителей с учетом коэффициента экранирования


≈ 18

где - коэффициент экранирования (прил., табл.1.).

Принимаем расстояние между заземлителями

6. Определяем длину соединительной полосы

7. Рассчитываем полное значение сопротивления растеканию тока с соединительной полосы

8. Рассчитываем полное значение сопротивления системы заземления

где =0.51 - коэффициент экранирования полосы (прил., табл.2.).


Вывод

Сопротивление R зу = 2,82 Ом меньше допускаемого сопротивления, равного 4 Ом. Следовательно, диаметр заземлителя d = 55 мм при числе заземлителей n= 18 является достаточным для обеспечения защиты при выносной схеме расположения заземлителей.

Рис. 4. Схема полученного выносного заземления.

Рис. 5. Схема расположения заземлителей.


Приложение




Частота тока Норм. вел. ПДУ, при t, с 0,01 - 0,08 свыше 1 Переменный f = 50 Гц UД IД 650 В - 36 В 6 мА Переменный f = 400 Гц UД IД 650 В - 36 В 6 мА Постоянный UД IД 650 В 40 В 15 мА Электрокотельное отделения, где установлены основное оборудование 6 кВ, относиться к классу особо опасных помещений по степени возможности поражения...

Линии электропередачи (ЛЭП) подстанции. Расчет токов короткого замыкания производится для двух точек, на шинах ВН, НН трансформатора ТДТН (рисунок 4.1) Расчёт параметров схемы замещения системы электроснабжения Рисунок 4.1 Схема замещения для расчёта токов КЗ. Расчёт ведём в именованных единицах точечным методом. Расчёт эквивалентных сопротивлений. Сопротивление системы: (4.1) ...

Трансформаторы которой выбираются с учетом взаимного резервирования; · Перерыв в электроснабжении возможен лишь на время действия автоматики (АПВ и АВР). Схема системы электроснабжения нефтеперекачивающей станции, удовлетворяющая требованиям изложенным выше, представлена на листе 2 графической части. 2.2 Схема электроснабжения НПС Рис. 2.1. Схема электроснабжения НПС На рис. 2.1. в...

Правильно организованное освещение производственных помещений весьма благотворно отражается на работоспособности персонала и его здоровье. Недостаток света, наоборот, приводит к утомляемости и раздражительности человека. Кроме того, при длительном нахождении в плохого расчёта освещения в помещении от чрезмерного напряжения глаз падает уровень остроты зрения. Слишком яркий свет может привести к фотоожогам глаз, перевозбуждению нервной системы и прочим неприятностям.

Поэтому вопрос рационального освещения рабочей зоны настолько важен, что для его нормирования разработаны санитарные и строительные нормативы. Соблюдение их требований обязательны для проектировщиков и руководителей предприятий.

Правильное освещение производственного помещения

  • общим;
  • местным;
  • комбинированным.

Местное освещение само по себе не используется, его применяют только в комбинации с общим. Подходящий для этого осветительный прибор может быть переносным или стационарным. Световое пятно от него не освещает даже прилегающие к нему площади.

Комбинированный метод освещенности здания

Комбинированное – требуется при выполнении рабочим высокоточных операций, не допускающих возникновения резких теней от каких-либо предметов.

Только комбинированное освещение может обеспечить соблюдение норм БЖД на предприятии

Общее – организуется в цехах с однотипными работами (например, в литейных). Встречаются случаи, когда комбинированное освещение просто нет возможности организовать.

Установленная освещенность для рабочих мест с мелкими работами соответствует 500-м Лк, постепенно снижаясь до 50 Лк в различных хранилищах.

Для максимальной экономичности, можно осветить технические или уличные территории приборами с .

Общая методика расчета

Расчетом параметров осветительной системы занимается инженер-электрик (проектировщик). Он может выполнить эту работу одним из трех способов:

  • через коэффициент использования потока света;
  • установки удельной мощности;
  • точечным.

Первым способом рассчитывается общее (равномерное) освещение рабочих поверхностей, расположенных в горизонтальной плоскости. В процессе работы вычисляется коэффициент для отдельно взятого помещения. В методике учитываются геометрические размеры производственного участка и степень светового отражения поверхностей.

Расчет через удельную мощность. Способ светотехнического расчета через удельную мощность используется только для предварительной прикидки установленной мощности осветительных установок, так как дает весьма приближенный результат.

Такие данные часто требуются для заполнения опросных листов, которые используются при получении технических условий или при составлении сметной стоимости монтажа осветительной системы предприятия.

Точечный метод. Такой способ пригоден для расчета освещения – локализованного и общего – при наличии осветительных приборах прямого света. На него не влияет пространственная ориентация анализируемой поверхности. Освещенность подсчитывают в каждой точке поверхности для каждого источника света в отдельности.

Реализация точечного метода представляет собой очень трудоемкий процесс, но и точность результата высокая. Правда, она зависит от добросовестности специалиста, выполняющего анализ.

Как рассчитать алгоритм

Расчет освещения участков производственных предприятий производится в следующей последовательности :

  • выбирается система освещения;
  • обосновывается нормированная освещенность каждого рабочего места;
  • выбирается наиболее рациональный и экономичный светильник;
  • оцениваются коэффициенты неравномерности освещения, запаса освещенности, отражения поверхностей, находящихся внутри помещения.

После этого рассчитываются:

  • индекс помещения;
  • коэффициент использования светового потока;
  • необходимое количество светильников;
  • На заключительном этапе выполняется чертеж или эскиз, на котором размечается расположение всех светильников.

Искусственный свет от люминесцентных ламп на производстве

А чтобы люминесцентные приборы долго светили и давали свет, установленной производителем яркости, необходимо использовать – .

Как рассчитывается норма КЕО

Естественный свет – величина непостоянная, потому и нормируется он не по освещенности, а по ее коэффициенту (КЕО). Он рассчитывается по формуле:

Е = (Ев/Ен) х 100 , %, где:

  • Ев – естественная освещенность точки, расположенной внутри помещения;
  • Ен – наружная освещенность (горизонтальная) при небосводе, открытом полностью.

Очередность шагов

Первым делом выбирается система освещения. Оно может быть боковым, верхним или комбинированным. Выбор зависит от назначения производственного помещения с обязательным учетом особенностей технологического процесса.

Нормированное значение КЕО выбирается по таблице СНиП 23-05-95. Его величина зависит от разряда зрительной работы (а разряд определяется в зависимости от величины самого мелкого элемента, с которым приходится работать рабочему).

Величина Ен корректируется в зависимости от района расположения производственного объекта.

КЕО снижается из-за запыленности поверхностей, пропускающих свет. Для учета степени загрязненности остекления выбирается коэффициент запаса Кз.

Световая характеристика проемов определяется в соответствии с:

  • соотношением длины и глубины помещения, глубины и высоты (от уровня рабочей поверхности до верхней границы окна) – при боковом освещении;
  • соотношением длины и ширины помещения, его высоты и ширины и типа фонаря – при верхнем освещении.

При боковом освещении нормируется КЕО (его минимальное значение) для рабочего места, наиболее удаленного от окна. При верхнем или комбинированном – нормированный показатель является средним для пяти точек, равноудаленных друг от друга и расположенных на рабочей поверхности.

Целью расчета естественного освещения является определение площади оконных проемов.

Если рабочее место расположено менее чем в двенадцати метрах от окна, достаточно одностороннего освещения. При увеличении расстояния свыше 12 метров необходимо обеспечить рабочую точку двухсторонним боковым освещением.

Примеры

Попробуем разобраться с методами расчета естественной и искусственной освещенности на простейших примерах.

Естественный свет

Имеется помещение длиной L = 10 м, шириной B – 10 м, высотой H -5 м. оконный проем имеет размеры 4х3,5 м с двойным остеклением.

По условиям задачи помещение расположено в третьем световом поясе. Точность зрительной работы персонала – высокая.

Нормированное значение КПО – 2% .

Окна ориентированы на север, они обеспечивают КЕО не менее 1,5% .

Для обеспечения КПО 2% необходимо наличие в помещении трех окон общей площадью 42 кв.м.

Искусственный свет

Дано помещение с геометрическими размерами 8х6х3,5 м. Нормируемая освещенность для данного производства – 300 лк.

Напряжение в сети предприятия – 220 В, предполагается использовать (коэффициент использования светового потока – 49%). Отражательная способность:

  • потолка -0,7;
  • стен – 0,5;
  • рабочей поверхности – 0,3.

Коэффициенты :

  • запаса Кз = 1,75;
  • неравномерности освещения – 1,1.

Разряд зрительных работ, выполняемых персоналом в данном помещении – III.

Рабочая поверхность КРЛ размещена на высоте 0,8 м, высота свеса – 0,1 м.

Площадь участка составляет 48 кв. м.

Индекс помещения (S/(H1 – H2) (L+B) = 48/(3,5 – 0,8) (8 + 6) = 1,26

Коэффициент использования (в соответствии с коэф. отражения поверхностями и индексом помещения) составляет 51.

Количество светильников N = (500 х 48 х 100х1,75)/(51 х 4 х 1150) = 17,9

Округлив результат, получим необходимое количество светильников, равное 18 шт.

Расположение осветительных приборов и их количество

Светильники могут размещаться с учетом, либо без учета размещения рабочих мест.

Если выбирается за основу система равномерного освещения цеха, они располагаются высоко от рабочих поверхностей, могут оснащаться дополнительными отражателями. Поток света иногда направляется не только вниз, но и вверх или в стороны.

При организации комбинированного освещения местные светильники устанавливаются на каждом рабочем месте.

Световой поток от местного осветительного прибора не должен попадать в поле зрения работающего.

В качестве источника света в производственных помещениях могут использоваться лампы различных типов : люминесцентные (наиболее часто применяемые), газоразрядные, накаливания.

О характеристиках светового потока лампы накаливания читайте в .

Расчет люминесцентного освещения сводится к определению количества рядов светильников и их число в каждом ряду. При разработке проекта освещения с использованием прочих типов ламп (газоразрядных, накаливания) количество светильников известно, расчетом определяется мощность одной лампы.

Немного об экономике

Владельца предприятия волнует не только комфорт рабочего персонала: для него важно снизить при этом потребление электроэнергии. Достичь этой цели можно разными путями:

  • применить более мощные осветительные приборы, уменьшив за счет этого их количество;
  • использовать приборы с пониженным тепловыделением, что позволит сэкономить на кондиционировании цеха;
  • уменьшить затраты на обслуживание светильников. Сейчас на многих заводах практикуется единовременная замена всех источников света в цехе по мере приближения к завершению срока их службы.

Перспективным вариантом является применение светодиодных светильников. отвечает всем требованиям энергосбережения, долговечны и не требуют текущего обслуживания.

Видео

Данное видео расскажет Вам как можно рассчитать освещение на производстве.

Поскольку от правильности расчета освещения производственного участка зависит в конечном итоге производительность персонала (не говоря о его здоровье), то данную работу должны выполнять опытные профессионалы. Самостоятельно рассчитать необходимое количество светильников, их мощность и определить рациональное размещение, не имея никакого опыта в этом вопросе, невозможно.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

ФГБОУ ВПО УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра экономики

Практическая работа

по дисциплине «Безопасность жизнедеятельности»

Расчет степени риска

Исполнитель:

Студент группы ВЭД-14 Дымарская И.В.

Руководитель:

Ст. преподаватель Панкратьева Н.А.

Екатеринбург 2014

Введение

Цель работы: Ознакомиться с основными понятиями БЖД: опасность и риск, виды риска, травмоопасный фактор и его виды; определение количественных характеристик опасности и методика расчета степени риска.

1. Теоритическая часть

Курс «безопасности жизнедеятельности» рассматривает и изучает важные для каждого человека вопросы. БЖД - комплексная дисциплина, изучающая возможности обеспечения безопасности человека применительно к любому виду человеческой деятельности. Приступая к изучению раздела «расчет степени риска», следует с самого начала ознакомиться с его основными понятиями.

Опасность - это явления, процессы, объекты, свойства предметов, способные в определенных наносить ущерб здоровью человека или окружающей среде.

Опасность хранят все системы, имеющие энергию, химически или биологически активные компоненты, а также характеристики, не соответствующие условиям жизнедеятельности человека. Говорят также, что такие системы обладают так называемым остаточным риском , т.е. способностью к потере устойчивости или длительному отрицательному воздействию на человека, окружающую среду.

Объективной основой опасности является неоднородность системы «человек - среда обитания».

Опасности носят потенциальный характер. Актуализация, или реализация опасностей происходит при определенных условиях, именуемых причинами. Для живых организмов опасностьреализуетсяв виде травмы., заболевания, смерти.

Признаками, определяющими опасность, могут быть:

· угроза для жизни;

· возможность нанесения ущерба здоровью;

· нарушение условий нормального функционирования органов и систем человека.

· нарушение условий нормального функционирования экологических систем

Частоту реализации опасности в процессе деятельности человека принято определять термином «риск». Дадим определение слову «риск»:

Риск - сочетание вероятности и последствий наступления неблагоприятных событий. Знание вероятности неблагоприятного события позволяет определить вероятность благоприятных событий по формуле:

где n - число реализованных нежелательных событий;

N - общее число возможных нежелательных событий за тот же период времени.

Риски можно разделить на огромное количество видов, но рассмотрим их классификацию по роду опасности и по возможности их предвидения.

Виды рисков по роду опасности:

· Техногенные риски -- это риски, связанные с хозяйственной деятельностью человека (например, загрязнение окружающей среды).

· Природные риски -- это риски, не зависящие от деятельности человека (например, землетрясение).

· Смешанные риски -- это риски, представляющие собой события природного характера, но связанные с хозяйственной деятельностью человека (например, оползень, связанный со строительными работами).

Виды рисков по возможности предвидения:

· Прогнозируемые риски -- это риски, которые связаны с циклическим развитием экономики, сменой стадий конъюнктуры финансового рынка, предсказуемым развитием конкуренции и т.п. Предсказуемость рисков носит относительный характер, так как прогнозирование со 100%-ным результатом исключает рассматриваемое явление из категории рисков. Например, инфляционный риск, процентный риск и некоторые другие их виды.

· Непрогнозируемые риски -- это риски, отличающиеся полной непредсказуемостью проявления. Например, форс- мажорные риски, налоговый риск и др.

Соответственно этому классификационному признаку риски подразделяются также на регулируемые и нерегулируемые в рамках предприятия.

Еще одним ключевым понятием является понятие «травмоопасный фактор»

Травмоопасный фактор - негативное воздействие на человека, способное при определенных условиях вызвать острое нарушение здоровья, травму и гибель организма.

Под травмоопасными факторами понимается любое техногенное, природное, социальное воздействие на человека, способствующее возникновению у него повреждений кожных покровов, мышц, костей, сухожилий, позвоночника, глаз, головы, других частей тела, не являясь их непосредственной причиной. Из огромного количества травмоопасных факторов, позволяющего утверждать, что любая деятельность - потенциально опасна, следует выделить наиболее значимую группу физических травмоопасных факторов, приводящих к механическому травмированию

К травмирующим (травмоопасным) факторам относятся : электрический ток, падающие предметы, высота, движущиеся машины и механизмы, обломки разрушающихся конструкций, агрессивные и ядовитые химические вещества; нагретые (охлажденные) элементы оборудования, перерабатываемого сырья и других теплоносителей; и т.д.

Результаты анализа причин травмирования позволяют утверждать, что - «все опасности можно контролировать до определённого предела, если они могут быть идентифицированы».

Рассмотрим одну задачу на расчет степени травмоопасного риска человека вследующей ситуации:

Пример 1

Спрогнозировать число погибших от пожара за год на ИЧП г. Екате-ринбурга, если известно, что величина индивидуального риска гибели от пожара работников таких предприятий составляет 4·10 -4 в год. Общее коли-чество реализаторов принять 10000 человек.

Воспользуемся основной формулой расчета степени риска для решения данной задачи:

В данном случае R и = 4*10^(-4), N = 10*10^3, откуда находим, что n, которое вычисляется по формуле n= R и *N, будет равно 4 .

Рассмотрим также таблицу, показывающую травмоопасный риск (риск фатального исхода) в год, обусловленный различными ситуациями.

Внимательно ее проанализировав, можно сделать вывод, что полная безопасность не может быть гарантирована никому, независимо от образа жизни.

2. Основная часть

Задача 1

Задача 2

Задача 3

Вывод

В результате практической работы №1 «Расчет степени риска» были изучены такие понятия БЖД, как опасность и риск, виды риска, теория о травмоопасном факторе. Я научилась определять количественные характеристики опасности, познакомилась с методикой расчета степени риска. безопасность риск травмоопасный

Основная цель безопасности жизнедеятельности как науки - защита человека в техносфере от негативных воздействий антропогенного и естественного происхождения и достижение комфортных условий жизнедеятельности.

Средством достижения этой цели является реализация обществом знаний и умений, направленных на уменьшение в техносфере физических, химических, биологических и иных негативных воздействий до допустимых значений. Это и определяет совокупность знаний, входящих в науку о безопасности жизнедеятельности.

Эта дисциплина решает следующие основные задачи:

Идентификация (распознавание и количественная оценка) негативных воздействий среды обитания;

Защита от опасностей или предупреждение воздействия тех или иных негативных факторов на человека;

Ликвидация отрицательных последствий воздействия опасных и вредных факторов;

Создание нормального, то есть комфортного состояния среды обитания человека.

Полная безопасность не может быть гарантирована никому, независимо от образа жизни. Поэтому мы можем лишь проводить мероприятия по снижению рисков, отградиться от них полностью мы не сможем. Разработаны следующие мероприятия по снижению риска:

Отказ от вредных привычек;

Крайне внимательное поведение на дорогах для избежания ДТП;

Быть внимательным при готовке, использовании газовых плит, зажигалок, спичек или других огнеопасных и легковоспламеняющихся предметов в помещении;

Использовать в пищу только свежие и натуральные продукты, максимально исключать из рациона продукты синтетического происхождения;

Не использовать огнестрельное оружие без крайней необходимости и вблизи других людей;

Многое другое.

Размещено на Allbest.ru

...

Подобные документы

    Математическая модель зонирования территории по степени опасности от цунами. Принцип Парето-оптимальности. Численные методы построения множества Парето, описание программы. Структурные методики зонирования береговой территории по степени опасности.

    курсовая работа , добавлен 23.07.2011

    Исследование проблем защиты человека от опасности в разных условиях. Особенности формирования общественной грамотности в сфере безопасности. Расчеты основных параметров землетрясений, зон поражения при наводнениях, степени риска. Оценка условий труда.

    контрольная работа , добавлен 07.10.2012

    Опасность - центральное понятие сферы безопасности жизнедеятельности и промышленной безопасности, их виды и сферы проявления. Основные положения теории риска, его классификация и типы. Анализ и управление риском. Устойчивость промышленных объектов.

    дипломная работа , добавлен 03.02.2011

    Понятие риска элементов техносферы. Развитие риска на технических объектах. Основы методологии анализа, оценки и управления риском. Идентификация опасностей и оценки риска для отдельных лиц, групп населения, объектов. Количественные показатели риска.

    презентация , добавлен 03.01.2014

    Методика определения расчетных величин пожарного риска в зданиях, сооружениях и строениях и строениях различных классов функциональной пожарной опасности. Порядок проведения расчета индивидуального пожарного риска. Анализ пожарной опасности здания.

    курсовая работа , добавлен 01.12.2014

    Факторы и ситуации, оказывающие отрицательное влияние на человека. Системно-структурная модель основ безопасности жизнедеятельности (ОБЖ) как науки, её цели. Классификация и характеристика опасностей. Определение приемлемого риска и системы безопасности.

    презентация , добавлен 17.12.2014

    Цели, задачи, объект и предметы изучения науки БЖД. Опасности и их источники, количественная характеристика, концепция приемлемого риска. Безопасности, её системы, принципы и методы обеспечения. Человек как элемент системы "человек - среда обитания".

    контрольная работа , добавлен 06.01.2011

    Основные положения теории риска. Концепция приемлемого риска. Действие техногенных опасностей. Методические подходы к определению риска. Выявление источников опасностей. Системный анализ безопасности. Причины отказов оборудования на предприятиях.

    лекция , добавлен 24.07.2013

    История возникновения научной и учебной дисциплины. Признаки опасности. Принципы БЖД. Виды негативных воздействий в системе "Человек - Среда обитания". Понятие "риск". Определение риска. Методы выявления производственных опасностей.

    реферат , добавлен 09.06.2002

    Задачи безопасности жизнедеятельности: идентификация, защита и ликвидация опасности. Презумпция потенциальной опасности деятельности. Угрозы естественного и антропогенного происхождения. Оценка рисков по результату воздействия негативных факторов.

КФ МГТУ им. Н.Э.Баумана

Практическое занятие по дисциплине «бжд»

Тема занятия:

«Расчёт общего искусственного освещения методом коэффициента использования светового потока»

Время: 2 часа.

Кафедра ФН2-КФ

Производственное освещение

Вся информация подается через зрительный анализатор. Вредное воздействие на глаза человека оказывают следующие опасные и вредные производственные факторы:

    Недостаточное освещение раб. зоны;

    Отсутствие/недостаток естественного света;

    Повышенная яркость;

    Перенапряжение анализаторов (в т.ч. зрительных)

По данным ВОЗ на зрение влияет

    яркий видимый свет;

    мерцание;

    блики и отраженный свет

      Физиологические характеристики зрения

    острота зрения;

    устойчивость ясного видения (различие предметов в течение длительного времени);

    контрастная чувствительность (разные по яркости);

    скорость зрительного восприятия (временной фактор);

    адаптация зрения;

    аккомодация (различие предметов при изменении расстояния)

      Светотехнические величины

Это понятие связано с той или иной осветительной установкой

1. Световой поток F, [лм] - люмен

2. Сила света J, [кд] - кандела

3. Освещенность E, [лк] - люкс

4. Яркость L, [кд/м 2 ]

5. Контраст К

К = (L 0 - L Ф)/L 0

Контраст бывает: - большой (К>0,5); - средний (К = 0,2 - 0,5); - малый (К<0,2).

6. Фон - поверхность, которая прилегает к объекту различения.

Наименьший размер объекта различения с фоном.

7. Коэффициент отражения 

 = F ПАД /F ОТР

В зависимости от коэф. отражения фон бывает:

Светлый  = 0,2 - 0,4;

Темный  < 0,2.

    1. Естественное освещение

При естественном освещении к-либо точки горизонтальной плоскости, за основу при нормировании принимается манимально допустимая величина коэффициента естественной освещенности.

Коэф. естеств. освещ. (КЕО) = Е = E ВН /Е СН 100%, где

E ВН - освещенность к-либо точки горизонтальной пов-ти, находящейся внутри помещения [лк];

Е СН - освещенность к-либо точки, находящейся снаружи помещения на расстоянии 1 м от здания [лк];

      1. Системы естественного освещения

    Боковое освещение;

    Верхнее освещение;

    Комбинированное освещение.

Эти величины в соответствии со СНиП II-4-79 (Строительные нормы и правила. Естественное и искусственное освещение. Нормы проектирования -М, Стройиздат, 1980) нормируются.

Для выбора естественного освещения необходимо учитывать следующие факторы:

    Разряд зрительной работы;

    Система освещения.

В зависимости от величины объекта различения с фоном все зрительные работы подразделяются на 8 разрядов.

Разряд зрительной работы - отношение минимального размера объекта различения с фоном к расстоянию от органов зрения до объекта различения.

    1. Искусственное освещение

Искусственное освещение - освещение помещений прямым или отраженным светом искусственного источника света

За основу при нормировании принимается минимально допустимая величина освещенности какой-либо точки.

        Системы искусственного освещения

  1. местное (локальное);

    комбинированное

Может быть использовано в производственных помещениях общее и комбинированное, а одно местное использовать нельзя.

Имеет место также освещение: - аварийное; - дежурное; - эвакуационное.

СНиП II-4-79

        Факторы, учитываемые при нормировании искусственного освещения:

    Характеристика зрительной работы;

    Минимальный размер объекта различения с фоном;

    Разряд зрительной работы;

    Контраст объекта с фоном;

    Светлость фона (характеристика фона);

    Система освещения;

    Тип источника света.

Подразряд зрительной работы определяется сочетанием п.4 и п.5.

        Методика расчета естественного освещения

Используется метод А.Д.Данилюка. Определяется площадь поверхности оконных проёмов.

        Методика расчета искусственного освещения

    Метод светового потока

    Метод удельной мощности

    Точечный метод

Метод светового потока

Задача. Определить освещенность на раб. месте

Е РМ = (0,9 - 1,2) Е Н

Для этого необходимо выбрать:

    систему освещения;

    источник света;

    светильник.

Формула для определения светового потока лампы или группы ламп

Е н - нормируемая величина освещенности [лк];

S - площадь производственного помещения [м 2 ];

К з - коэф. запаса;

N - кол-во светильников [шт];

Z - поправочный коэф-т, зависит от типа лампы

 - коэф-т использования светового потока, для выбора которого необходимо знать:

Коэф. отражения от потолка, стен и пола ( п,  с,  р);

Индекс помещения - i=a · b/(h p · (a+b)),

где а и b - ширина и длина помещения, м; h p - высота подвеса светильника над расчётной поверхностью, м.

Для ЛЛ ламп, зная групповой световой поток F и кол-во ламп в светильнике n (2 или 4), определим световой поток одной лампы.

F РАСЧ = (0,9 - 1,2) F ТАБЛ

Распределение светильников по площади производственного помещения.

Для ЛЛ - вдоль длинной стороны помещения, вдоль окон, параллельно стенам с окнами.

Для ЛН, ДРЛ - в шахматном порядке.

ЛЛ лампы

Достоинства

Недостатки

Высокий КПД;

Наличие дополнительных устройств;

Экономичность;

Грозкость;

Свет, близкий к естественному

Инерционность

Лампы накаливания

Не инерционные;

Желтая область спектра;

Компактные

Малая светоотдача;

Малый срок эксплуатации

Министерство образования Российской Федерации

Томский политехнический университет

УТВЕРЖДАЮ

Декан ИЭФ

«____» _____________ 2005г.

Безопасность жизнедеятельности

Методические указания к выполнению индивидуальных заданий

«____» ________________ 2005г.

Зав. кафедрой ЭБЖ

проф., д. т.н.

Одобрено методической комиссией ИЭФ

предс. метод. комиссии

доцент, к. т.н.

«____» ______________ 2005г.

РАСЧЁТ ИСКУССТВЕННОГО ОСВЕЩЕНИЯ

Правильно спроектированное и рационально выполненное освещение производственных помещений оказывает положительное воздействие на работающих, способствует повышению эффективности и безопасности труда, снижает утомление и травматизм, сохраняет высокую работоспособность.

Основной задачей расчётов для искусственного освещения является определение требуемой мощности электрической осветительной установки для создания заданной освещённости.

В расчётном задании должны быть решены следующие вопросы:

Выбор системы освещения;


Выбор источников света;

Выбор светильников и их размещение;

Выбор нормируемой освещённости;

Расчёт освещения методом светового потока.

I. ВЫБОР СИСТЕМЫ ОСВЕЩЕНИЯ

Для производственных помещений всех назначений применяются системы общего (равномерного или локализованного) и комбинированного (общего и местного) освещения. Выбор между равномерным и локализованным освещением проводится с учётом особенностей производственного процесса и размещения технологического оборудования. Система комбинированного освещения применяется для производственных помещений, в которых выполняются точные зрительные работы. Применение одного местного освещения на рабочих местах не допускается.

В данном расчётном задании для всех помещений рассчитывается общее равномерное освещение.

2. ВЫБОР ИСТОЧНИКОВ СВЕТА

Источники света, применяемые для искусственного освещения, делят на две группы – газоразрядные лампы и лампы накаливания.

Для общего освещения, как правило, применяются газоразрядные лампы как энергетически более экономичные и обладающие большим сроком службы. Наиболее распространёнными являются люминесцентные лампы. По спектральному составу видимого света различают лампы дневного света (ЛД), дневного света с улучшенной цветопередачей (ЛДЦ), холодного белого (ЛХБ), тёплого белого (ЛТБ) и белого цвета (ЛБ) . Наиболее широко применяются лампы типа ЛБ. При повышенных требованиях к передаче цветов освещением применяются лампы типа ЛХБ, ЛД, ЛДЦ. Лампа типа ЛТБ применяется для правильной цветопередачи человеческого лица.

Основные характеристики люминестцентных ламп приведены в таблице 1.

Кроме люминесцентных газоразрядных ламп (низкого давления) в производственном освещении применяют газоразрядные лампы высокого давления, например, лампы ДРЛ (дуговые ртутные люминесцентные) и др., которые необходимо использовать для освещения более высоких помещений (6-10м).

Таблица 1

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЛЮМИНЕСЦЕНТНЫХ ЛАМП

Мощ-ность,

Напряже-ние сети,

ние на лампе, В

Ток лампы, А

Световой поток, лм

Использование ламп накаливания допускается в случае невозможности или технико-экономической нецелесообразности применения газоразрядных ламп.

3. ВЫБОР СВЕТИЛЬНИКОВ И ИХ РАЗМЕЩЕНИЕ

При выборе типа светильников следует учитывать светотехнические требования, экономические показатели, условия среды.

Наиболее распространёнными типами светильников для люминесцентных ламп являются:

Открытые двухламповые светильники типа ОД, ОДОР, ШОД, ОДО, ООД – для нормальных помещений с хорошим отражением потолка и стен, допускаются при умеренной влажности и запылённости.

Светильник ПВЛ – является пылевлагозащищённым, пригоден для некоторых пожароопасных помещений: мощность ламп 2х40Вт.


Плафоны потолочные для общего освещения закрытых сухих помещений :

Л71Б03 – мощность ламп 10х30Вт;

Л71Б84 – мощность ламп 8х40Вт.

Основные характеристики светильников с люминесцентными лампами приведены в таблице 2.

Размещение светильников в помещении определяется следующими размерами, м:

Н – высота помещения;

hc – расстояние светильников от перекрытия (свес);

hn = H - hc – высота светильника над полом, высота подвеса;

hp – высота рабочей поверхности над полом;

h =hn – hp – расчётная высота, высота светильника над рабочей поверхностью.

Для создания благоприятных зрительных условий на рабочем месте, для борьбы со слепящим действием источников света введены требования ограничения наименьшей высоты светильников над полом (табл.3);

L – расстояние между соседними светильниками или рядами (если по длине (А) и ширине (В) помещения расстояния различны, то они обозначаются LA и LB),

l – расстояние от крайних светильников или рядов до стены.

Таблица 2

Основные характеристики некоторых светильников

с люминесцентными лампами

Тип светиль-ника

Количество и мощность

Область применения

Размеры, мм

Освещение производ-ственных помещений с нормальными усло-виями среды

Для пожароопасных помещений с пыле-и влаговыделениями

Аналогично ОД

Оптимальное расстояние l от крайнего ряда светильников до стены рекомендуется принимать равным L/3.

Наилучшими вариантами равномерного размещения светильников являются шахматное размещение и по сторонам квадрата (расстояния между светильниками в ряду и между рядами светильников равны).

При равномерном размещении люминесцентных светильников последние располагаются обычно рядами – параллельно рядам оборудования. При высоких уровнях нормированной освещённости люминисцентные светильники обычно располагаются непрерывными рядами, для чего светильники сочленяются друг с другом торцами.

Интегральным критерием оптимальности расположения светильников является величина l = L/h, уменьшение которой удорожает устройство и обслуживание освещения, а чрезмерное увеличение ведёт к резкой неравномерности освещённости. В таблице 4 приведены значения l для разных светильников.

Таблица 3

Наименьшая допустимая высота подвеса светильников

с люминесцентными лампами

Таблица 4

Наивыгоднейшее расположение светильников

Расстояние между светильниками L определяется как:

Необходимо изобразить в масштабе в соответствии с исходными данными план помещения, указать на нём расположение светильников (см. рис. 1) и определить их число.

4. ВЫБОР НОРМИРУЕМОЙ ОСВЕЩЁННОСТИ

Основные требования и значения нормируемой освещённости рабочих поверхностей изложены в СНиП. Выбор освещённости осуществляется в зависимости от размера объёма различения (толщина линии, риски, высота буквы), контраста объекта с фоном, характеристики фона. Необходимые сведения для выбора нормируемой освещённости производственных помещений приведены в таблице 5.

Таблица 5

Нормы освещённости на рабочих местах производственных помещений

при искусственном освещении (по СНиП)

Характеристика зрительной работы

Наименьший размер объекта различения,

Разряд зритель-ной работы

Подразряд зрительной работы

Контраст объекта с фоном

Характе-ристика фона

Искусственное освещение

Освещённость, лк

При системе комбинированного освещения

при системе общего освещения

в том числе от общего

Наивысшей точности

точности

Высокой точности

Продолжение таблицы 5

точности

точности

Грубая (очень малой точности)

Независимо от характеристик фона и контраста объекта с фоном

5. РАСЧЁТ ОБЩЕГО РАВНОМЕРНОГО ОСВЕЩЕНИЯ

Расчёт общего равномерного искусственного освещения горизонтальной рабочей поверхности выполняется методом коэффициента светового потока, учитывающим световой поток, отражённый от потолка и стен.

Световой поток лампы накаливания или группы люминесцентных ламп светильника определяется по формуле:

Ф = Ен × S × Kз × Z *100/ (n × h),

где Ен – нормируемая минимальная освещённость по СНиП, лк;

S – площадь освещаемого помещения, м2;

Kз – коэффициент запаса, учитывающий загрязнение светильника (источника света, светотехнической арматуры, стен и пр., т. е. отражающих поверхностей), (наличие в атмосфере цеха дыма), пыли (табл. 6);

Z – коэффициент неравномерности освещения, отношение Еср./Еmin. Для люминесцентных ламп при расчётах берётся равным 1,1;

n – число светильников;

h - коэффициент использования светового потока, %.

Коэффициент использования светового потока показывает, какая часть светового потока ламп попадает на рабочую поверхность. Он зависит от индекса помещения i, типа светильника, высоты светильников над рабочей поверхностью h и коэффициентов отражения стен rс и потолка rn.

Индекс помещения определяется по формуле

Коэффициенты отражения оцениваются субъективно (табл. 7).

Значения коэффициента использования светового потока h светильников с люминесцентными лампами для наиболее часто встречающихся сочетаний коэффициентов отражения и индексов помещения приведены в таблице 8.

Рассчитав световой поток Ф, зная тип лампы, по таблице 1 выбирается ближайщая стндартная лампа и определяется электрическая мощность всей осветительной системы. Если необходимый поток светильника выходит за пределы диапазона (-10 ¸+20%), то корректируется число светильников n либо высота подвеса светильников.

При расчете люминесцентного освещения, если намечено число рядов N, которое подставляется в формулу вместо n, под Ф следует подразумевать световой поток светильников одного ряда. Число светильников в ряду n определяется как

где Ф1 – световой поток одного светильника.

Таблица 6

Коэффициент запаса светильников люминесцентными лампами

Таблица 7

Значение коэффициентов отражения потолка и стен

Состояние потолка

Состояние стен

Свежепобеленный

Побеленный, в сырых помещениях

Чистый бетонный

Светлый деревянный (окрашенный)

Бетонный грязный

Деревянный неокрашенный

Грязный (кузницы, склады)

Свежепобеленные с окнами, закрытыми шторами

Свежепобеленные с окнами без штор

Бетонные с окнами

Оклеенные светлыми обоями

Кирпичные неоштукатуренные

С тёмными обоями

Таблица 8

Коэффициенты использования светового потока светильников с люминесцентными лампами

Тип светильника