Система стандартов безопасности труда. Одежда специальная для защиты от термических рисков электрической дуги

сти так называемой идеальной атмосферы, т. е. атмосферы, не со­ держащей водяных паров и взвешенных аэрозольных частиц. Фак­ тор мутности Т рассчитывается по формуле

где Pi - коэффициент прозрачности идеальной атмосферы

В качестве единицы измерения радиации на сети Росгидроме­ та используют киловатт на квадратный метр (кВт/м2). Суммы ра­ диации выражают в мегаджоулях на квадратный метр (МДж/м2). В таблицах, справочниках, монографиях значения радиации и её сумм могут быть представлены в других единицах. Для возможно­ сти сравнения значений, выраженных в различных единицах, сле­ дует использовать соотношения:

Срочные актинометрические наблюдения предусматривают выполнение измерений вручную в установленные сроки при по­ мощи актинометрических датчиков с показывающими измери­ тельными приборами характеристик солнечного излучения и оп­ ределение дополнительных характеристик условий наблюдений. По результатам срочных наблюдений определяют значения видов радиации и коэффициент прозрачности атмосферы в момент на­ блюдения, а также месячные суммы этих видов радиации.

Комплекс характеристик солнечного излучения (составляю­ щих радиационного баланса) включает прямую солнечную радиа­ цию, рассеянную радиацию, суммарную радиацию, отражённую коротковолновую радиацию, коротковолновое альбедо подсти­ лающей поверхности, радиационный баланс, баланс коротковол­ новой радиации, баланс длинноволновой радиации.

Комплекс характеристик состояния атмосферы и земной по­ верхности включает количество и форму облаков, цвет неба, со­ стояние диска Солнца, метеорологическую дальность видимости, состояние подстилающей поверхности, температуру воздуха, пар­ циальное давление водяного пара, температуру поверхности почвы.

При срочных наблюдениях погрешность AJ определения пря­ мой солнечной, рассеянной, суммарной, отражённой радиации и радиационного баланса вычисляется по формуле и округляется до

0,01 кВт/м2:

где J - измеренное значение радиации (кВт/м2), енты, значения которых указаны в таблице.

Ъ и с - коэффици­

Вид радиации и её обозначение

Прямая солнечная радиация S

Рассеянная радиация D

Суммарная радиация Q

Отражённая радиация R

Радиационный баланс В

Погрешность ЛР2 определения коэффициента прозрачности атмосферы Р 2 при высоте Солнца более 17° не превышает 0,02.

Погрешность определения характеристик дополнительной информации при выполнении актинометрических наблюдений: определение температуры производится с погрешностью не более 1 °С, парциального давления водяного пара - не более 0,1 гПа, продолжительность солнечного сияния - не более 10 мин за сутки, скорость ветра - не более 1 м/с.

2. Актинометрические приборы

Почти все актинометрические приборы основаны на опреде­ лении изменения температуры теплочувствительных элементов под воздействием радиации. Радиация поглощается чувствитель­ ным элементом и превращается в тепло. Изменение температуры чувствительного элемента прибора, пропорциональное энергети­ ческой освещённости, измеряется термоэлементами или термоба­ тареями.

Основными измерительными приборами являются термоэлек­ трические: актинометр, пиранометр, балансомер. Определяемые виды радиации при попадании на приемную поверхность этих приборов преобразуются в электрический ток, который измеряется гальванометром. Поэтому при нахождении радиационных потоков

каждого прибора в паре с гальванометром вычисляется перевод­ ной множитель: Д

а = - ^- (R 6 + R r + Rd) ,

где К - чувствительность приемной поверхности измерительного прибора (мВ/кВт); а - цена деления гальванометра в микроампе­ рах (lO""6 A), R6 и Rr - сопротивление термоэлектрической батареи

и рамки гальванометра (Ом), - добавочное сопротивление если оно используется при измерениях (Ом).

Перечисленные характеристики указываются в проверочных свидетельствах приборов.

Актинометр термоэлектрический М-3 (АТ-50) (рис. 2). Прибор предназначен для измерений прямой солнечной радиации S, кроме того, используется в качестве образцового прибора для определения чувствительности пиронометров и балансомеров.

Для наблюдений на актинометрической стойке с неподвижной стрелой трубку 7 устанавливают с помощью штатива 10-11, кото­ рый ориентируют стрелкой на север, затем ослабляют винт 2 и

ставят сектор широт 9 по широте. Ослабляют винт 3 и, вращая трубку 7 и рукоятку 6 , нацеливают трубку на Солнце. Ось 8 шта­ тива и рукоятка 6 расположены по оси мира, и поэтому, вращая рукоятку 6 , можно вести трубку за Солнцем, лишь изредка по­

правляя наклон трубки по склонению вращением на оси 4. Наце­ ливание производится с помощью экрана 5 на нижнем конце труб­ ки, где должна концёнтрично располагаться тень от оправы вход­ ного окна. Для более точного нацеливания служит отверстие в оп­ раве трубки 7 и чёрная точка на белой поверхности экрана 5, на которую устанавливается световой зайчик. При работе на актино­ метрической стойке с подвижной стрелой наводку осуществляют только вращением осей 4 и 8 и не осуществляют установку акти­

нометра на север и по широте. Крышка 1 надевается на трубку для контроля места нуля. В комплекте также имеется футляр для за­ щиты актинометра от внешних воздействий в промежутках между наблюдениями.

Рис. 2. Актинометр термоэлектрический М-3 (АТ-50).

Приёмником актинометра служит диск из сусального серебра толщиной 0,003 мм и диаметром 11 мм, расположенный в конце трубки 7. Обращённая к Солнцу сторона серебренного диска по­ крыта матово-чёрной эмалью, а к обратной стороне приклеена па­ пиросная бумага толщиной 0,009 мм и 26 спаев термобатареи из константана и манганина в форме ленточек, расположенных звез­ дообразно. Внешние спаи приклеены через бумажную изоляцию к медному кольцу. В трубке имеются семь постепенно сужающихся к приёмнику радиации диафрагм, обеспечивающих угол зрения прибора в 10 °.

Выводы термобатареи присоединяются к гальванометру, по­ казания которого пропорциональны термоэлектродвижущей силе, а она пропорциональна разности температур центральных и пери­ ферийных спаев, а эта разность пропорциональна интенсивности радиации.

Перед наблюдением открытая трубка нацеливается на Солнце на 2 мин для просушки черни на приёмнике. Затем крышка наде­ вается и через 25 с отсчитывается место нуля. Через 25 с после снятия крышки можно производить наблюдения.

Контроль чувствительности актинометра производится парал­ лельными наблюдениями по пиргелиометру или по хорошо прове­ ренному образцовому актинометру. Проверка актинометра по пир­ гелиометру производится только при высотах Солнца больше 22°, при голубом небе и при отсутствии облаков на расстоянии 20 ° во­

круг Солнца.

Термоэлектрический пиранометр М-80М (рис.3). Прибор предназначен для измерения суммарной радиации Q, отражённой коротковолновой RK , а также рассеянной D, при использовании теневого экрана.

Рис. 3. Термоэлектрический пиранометр М-80М.

Выпускается пиранометр с приёмником М-115, у которого квадратная термобатарея 3 окрашена в чёрно-белый цвет в виде шахматной доски. Чёрные поля закрашены платиновой чернью и закопчены сажей с коэффициентом поглощения 5=0,985, которая поглощает коротковолновую и длинноволновую радиацию, а бе­ лые поля закрашены магнезией, поглощающей только длинновол­ новую радиацию. Поля по-разному поглощают солнечную посту-

пающую радиацию и нагреваются пропорционально поглощённой радиации. Термобатарея размером 32x32 мм составлена из пло­ ских ленточек манганина и константана, уложенных зигзагообраз­ но и составляющих 87 термоэлементов. Ленты последовательно спаяны в 32 полосы. Приёмник пиранометра 1 защищается от вет­ ра и гидрометеоров полусферическим стеклянным колпаком, про­ пускающим радиацию в диапазоне от 0,33 до 3 мкм.

При измерениях на актинометрической стойке с неподвижной стрелой приёмник может быть установлен горизонтально с помо­ щью уровня 7 и винтов 4. Теневой экран 5 - диск диаметром 85 мм прикрепляется к стержню 6 длиной 485 мм, причём диск виден из центра термобатареи под углом 10 °, что позволяет исключить по­

падание прямой солнечной радиации на приёмник. Для затенения ослабляют винт 8 и стойка поворачивается стержнем к Солнцу.

Рассеянную радиацию измеряют при затенённом приёмнике.

Для измерения отражённой радиации пиранометр, установ­ ленный на планке толщенной до 2 см, отгибая пружину 2, опроки­

дывают приёмником вниз. Поверхность участка под пиранометром должна быть горизонтальна и в радиусе 5 м покрыта естественной растительностью.

При работе на актинометрической стойке с подвижной стре­ лой М-13а используют только приёмник радиации М-115. Все операции по горизонгированию, затенению и опрокидыванию производят с помощью рукояток и регулировочных винтов акти­ нометрической стойки. Стеклянный колпак пиранометра защищён от отражённой радиации чёрным плоским кольцевым защитным экраном, расположенным в плоскости приёмника. Экран защищает колпак также и от радиации неба при измерениях отражённой ра­ диации.

К пиранометру придаётся крышка, надеваемая на приёмник для определения места нуля. Перед измерениями приёмник пира­ нометра облучают прямой радиацией для просушки. Постоянная времени пиранометра 7-9 с, что требует выдержки до 35-50 с для достижения устойчивого показания.

Контроль чувствительности пиранометра производится парал­ лельными наблюдениями по образцовому актинометру и проверяе­ мому пиранометру установленному в поверочную трубу ПО-11.

В -S ",

Термоэлектрический балансомер М-10М (рис.4). Прибор предназначен для измерения радиационного баланса В, а также радиационного баланса без прямой солнечной радиации при использовании теневого экрана.

Балансомер представляет собой круглую плоскую пластинку 1 диаметром 100 мм с двумя квадратными чёрными приёмниками 2

на противоположных сторонах, отмеченных №1 и №2. Приёмные пластинки из меди зачернены матово-чёрной эмалью. При измере­ ниях один приёмник обращён к исследуемой поверхности (вниз) и на него поступают коротковолновый поток отражённой солнечной радиации R K и земное издучение Е 3 вместе с отражённой частью длинноволнового Я д излучения атмосферы Е л и окружающих предметов. Другой приёмник, обращённый вверх, получает сум­ марную солнечную радиацию Q вместе с излучением атмосферы Е л. Следовательно, балансомер измеряет разность:

B = (S " + D + E a ) - (R k + R „ + E 3) .

При затенённом балансомере исключается S", которая гораздо точнее вычисляется по показаниям актинометра.

Температура каждой пластины приёмника зависит от погло­ щённой радиации и отличается от температуры воздуха, а также зависит от скорости ветра, так как с увеличением скорости ветра усиливается конвективный теплообмен. Поэтому при измерении по балансомеру всегда производятся отсчёты скорости ветра по анемометру, установленному на одном уровне с балансомером.

Влияние ветра на показания балансомера учитывают введени­ ем поправочного множителя Фу. Поправочным множителем к по­ казаниям балансомера при ветре называется число, на которое нужно умножить показание балансомера при данной скорости вет­ ра, чтобы получить показание балансомера при штиле.

Разность температур приёмных пластин, зависящая от балан­ са, измеряется термобатареями, спаи которых поочерёдно распо­ ложены у пластин. Термобатареи представляют собой медные бруски с намотанной на них константановой лентой, на половину каждого витка нанесён слой серебра толщиной 0,03 мм.

Для установки на актинометрическую стойку с неподвижной стрелой балансомер выпускается с двумя шаровыми шарнирами 3,

Росенйиаш государственный

Б И Б Л И О Т Е К А

19619$, CHS, Малаотжнский пр., 98

4 и теневым экраном 5. При затенении экран должен быть виден из центра приёмника под углом 10 °. При этом тень от шарнира с за-

тенителем должна направляться в сторону шарнира с балансомером, а балансомер должен располагаться рукояткой перпендику­ лярно направлению на Солнце. Для такой установки планка с шарнирами прикрепляется к стойке одним винтом и при измене­ нии азимута Солнца вращается вместе с балансомером.

При работе на актинометрической стойке с поворотной стре­ лой поворот балансомера осуществляют поворотом всей стойки. Затенение осуществляют теневым экраном стойки.

Рис. 4. Термоэлектрический балансомер М-10М

Поворачивая первую сторону вверх при высоком Солнце и открытом приёмнике, соединяют балансомер с гальванометром так, чтобы стрелка отклонялась вправо. Если балансомер подклю­ чается через переключатель, то такое положение переключателя отмечается знаком “+”, причём знак меняется на обратный в сле­ дующих случаях:

а) при отклонении стрелки влево от нуля, б) при переключении в другое отрицательное положение пе­

реключателя,

в) при переворачивании балансомера вторым приёмником. Для защиты балансомера от осадков и пыли, между измере­

ниями, используют специальный футляр 6 .

Определение чувствительности производится сравнением по­ казаний актинометра с показанием балансомера, установленного в поверочную трубу ПО-11.

Гальванометр ГСА-1М (рис.5). Гальванометр стрелочный актинометрический служит для измерения тока, возникающего в термобатареях термоэлектрических актинометрических приборов.

На корпусе гальванометра 1 снизу укреплены три клеммы 2, обозначения которых “+”, “Р” и “С” нанесены на крышке корпуса 3 сбоку. Выводы рамки гальванометра припаяны к клеммам “+” и “Р”. К клеммам “Р” и “С” припаяны выводы добавочного сопро­ тивления. При включении гальванометра для измерения тока на клеммы “+” и “Р” в цепь тока включается только рамка гальвано­ метра. При включении же гальванометра на клеммы “+” и “С” в цепь тока последовательно с рамкой гальванометра включается

Рис. 5. Гальванометр ГСА-1М.

На выступах корпуса укреплена шкала 4, имеющая 100 деле­ ний. На шкале укреплены ограничители хода стрелки. В вырезах

шкалы укреплены зеркальная полоска 5 и термометр 6 . На шкале

нанесены: марка завода-изготовителя, год выпуска и заводской номер гальванометра, индекс гальванометра (ГСА-1), а также ве­ личины внутреннего сопротивления рамки и добавочного сопро­ тивления гальванометра. В крышке корпуса сделан вырез, закры­ тый стеклом 7, через которое производятся отсчёты показаний гальванометра и термометра. Для защиты от повреждений стекло закрывается откидным щитком 8 , на внутренней стороне которого

изображена электрическая схема гальванометра.

В крышке корпуса укреплён винт корректора 9, поворотом винта устанавливается нулевое положение стрелки гальванометра. При отсутствии тока стрелка должна находиться на пятом делении шкалы. Это деление при дальнейшей работе принимается за нача­ ло отсчётов и называется “местом нуля”.

Арретирование гальванометра осуществляется посредством вин­ та 10. При ввинчивании винта электрическая цепь рамки гальвано­ метра замыкается накоротко, в результате чего затухают колебания рамки, возникающие при перемещении гальванометра и толчках.

Гальванометр крепится к основанию футляра 11 специальным

винтом 12 с резиновыми амортизаторами. Сверху гальванометр закрывается кожухом 13, который соединяется с основанием по­ средством штифтов 14, укреплённых на кожухе, и пружины 15.

При включении гальванометра в цепь тока возникает взаимо­ действие магнитных полей рамки с током и постоянных магнитов. Рамка поворачивается, и прикреплённая к ней стрелка перемещает­ ся вдоль шкалы. Угол поворота рамки, а следовательно, и смещение стрелки пропорциональны силе тока, проходящего через рамку.

Стойка актинометрическая М-13а (рис. 6 ). На стойке уста­

навливают актинометр, пиранометр и балансомер, предназначен­ ные для выполнения срочных наблюдений.

Стойку М-13а крепят в грунте опорой 2 со стабилизаторами 1. Насадка 4 установлена на опоре 2. Горизонтальность стрелы 9 ре­ гулируют при помощи трёх винтов 3 по уровню установленному на стреле и фиксируют с помощью винта 5. Внутри направляющей трубы 10 проходит стрела 9, которую можно поворачивать в трубе 10 и фиксировать винтом 11. На стреле 9 крепят головку пирано­ метра 14 и балансомер 18.

ТЕПЛОВОЙ РЕЖИМ

АТМОСФЕРЫ

В зависимости от длины волн энергетический спектр удобно разделить на три части:

0,1-0,4 мкм- ультрафиолетовое излучение и рентгеновские лучи, составляющие около 5 %.

0,4 – 0,76 мкм видимая часть спектра, составляющая 52%;

более 0,76 мкм- инфракрасное излучение, составляющее около 43% всей солнечной энергии;

Приблизительно 99% солнечной радиации имеют длины волн от 0,15 до 4 мк. Максимум интенсивности солнечного света приходится на длину волны 0,5 мк (зелено-голубой свет). Максимум излучения Солнца приходится на 0,5 мкм (сине-голубой участок спектра).

В метеорологии принято выделять коротковолновую и длинноволновую радиацию. К коротковолновой относят радиацию в диапазоне длин волн от 0,1 до 4 мкм, т. е. она включает, кроме видимого участка спектра, еще и ближайшие к нему по длинам волн участки ультрафиолетового и инфракрасного спектра. Длинноволновая - это радиация с длинами волн от 4 до 100-120 мкм. Такой радиацией обладают земная поверхность и атмосфера.

Количество тепла, приносимого солнечной радиацией на 1 см 2 поверхности, перпендикулярной солнечным лучам, в 1 мин называется интенсивностью солнечной радиации. Она измеряется специальными приборами - актинометрами и пиргелиометрами и выражается в

кал/(см 2 -мин) (1 кал =4,1868 Дж).

Вычисления, основанные на многочисленных измерениях у земной поверхности, и непосредственно измерения, проведенные с помощью искусственных спутников Земли, показали, что при среднем расстоянии Земли от Солнца интенсивность солнечной радиации составляет

кал/(см2-мин) или 1,36 квт/м2.

Эта величина называется солнечной постоянной .

Распределение солнечной радиации на верхней границе атмосферы и ее изменение по времени зависят от следующих причин.

1. От степени активности Солнца. В годы наибольшей активности солнечной деятельности солнечная радиация увеличивается. Солнечная постоянная в эти годы на 2% больше, чем в годы спокойного Солнца. С возрастанием активности солнечной деятельности на Земле увеличивается также интенсивность магнитных и ионосферных возмущений.

2. От расстояния между Землей и Солнцем. Так как орбита Земли представляет собой эллипс, в одном из фокусов которого находится Солнце, то расстояние от Земли До Солнца в течение года не остается постоянным.

В день зимнего солнцестояния - 22 декабря, когда Земля находится в перигелии, напряженность солнечной радиации примерно на 3,3% больше, а в день летнего солнцестояния - 22 июня на 3,3% меньше, чем весной и осенью.

3.0т угла падения лучей Солнца на поверхность.

Если обозначить через h ☼ высоту Солнца, то непосредственно на единицу горизонтальной поверхности АС приходится радиации во столько раз меньше, во сколько раз АС больше АВ.

Обозначив количество солнечной радиации, падающей на 1 см 2 в 1 мин на площадку АВ, через I 0 , а на площадку AC - через I h , получим

I h = I 0 sin h ☼ . Плотность потока солнечной радиации на горизонтальную поверхность называется инсоляцией

Из астрономии известно, что h ☼ = sin φ sin δ + cos φ co δ cos t .

где φ - широта места; δ - склонение Солнца; t - местный часовой угол Солнца.

Следовательно, приток тепла от солнечной радиации, поступающей на горизонтальную поверхность, зависит от: широты места φ, чем в основном обусловливаются различия климатических поясов земного шара; склонения Солнца δ, изменяющегося в течение года от 23,5°N До 23,5°S, чем обусловливаются времена года; местного часового угла Солнца t, что обусловливает суточный ход интенсивности солнечной радиации.

Приказ Министерства промышленности и энергетики РФ от 28 марта 2007 г. N 97
"Об утверждении Методических рекомендаций по определению технических требований к комплектам для защиты от воздействия электрической дуги"В целях обеспечения единства методических подходов к определению технических требований к комплектам для защиты от воздействия электрической дуги приказываю:1. Утвердить прилагаемые Методические рекомендации по определению технических требований к комплектам для защиты от воздействия электрической дуги.2. Признать утратившим силу приказ Минпромэнерго России от 21 октября 2004 г. N 128 "Об утверждении Методических рекомендаций по определению технических требований к комплектам для защиты от воздействия электрической дуги".3. Контроль за исполнением настоящего приказа возложить на заместителя министра Дементьева А.В.

Настоящие Методические рекомендации по определению технических требований к комплектам для защиты от воздействия электрической дуги (далее - Методические рекомендации) разработаны в соответствии с Трудовым кодексом Российской Федерации, Федеральным законом от 17 июля 1999 г. N 181-ФЗ "Об основах охраны труда в Российской Федерации", постановлением правительства Российской Федерации от 13 августа 1997 г. N 1013 "Об утверждении перечня товаров, подлежащих обязательной сертификации, и перечня работ, услуг, подлежащих обязательной сертификации" и постановлением Министерства труда и социального развития Российской Федерации от 26 апреля 2004 г. N 54 "О внесении изменений и дополнений в "Типовые отраслевые нормы бесплатной выдачи одежды, специальной обуви и других средств индивидуальной защиты работникам организаций электроэнергетической промышленности" (далее-Типовые нормы).

I. Введение

Степень опасности для жизни и здоровья работников, занятых в условиях риска возникновения электрической дуги, чрезвычайно высока. В соответствии с действующим законодательством работодатель обязан обеспечить электротехнический персонал надежными средствами индивидуальной защиты, в том числе и от воздействия электрической дуги.Комплекты для защиты от воздействия электрической дуги предоставляют шанс на спасение жизни и сохранение здоровья, позволяют продлевать время эвакуации из опасной зоны.Методические рекомендации могут быть использованы при проектировании, изготовлении, эксплуатации и сертификации, а также при выборе и приобретении работодателями комплектов для защиты от воздействия электрической дуги.Соблюдение рекомендуемых требований к комплектам для защиты от воздействия электрической дуги позволит снизить вероятность несчастных случаев в организациях электроэнергетической промышленности, в том числе и со смертельным исходом, и не допустить (исключить) поставки некачественных средств индивидуальной защиты.

II. Классификация

По международной классификации комплекты для защиты от воздействия электрической дуги относятся к 3-му классу опасности (директива Совета ЕЭС 89/686/ЕЭС).При комплектовании средств индивидуальной защиты от воздействия электрической дуги (далее - комплекты) рекомендуется учитывать, что:- комплекты подбираются в соответствии с проведенной оценкой риска всех видов обслуживаемого оборудования;- комплекты обеспечивают защиту от выделяемой электрической дугой энергии в диапазоне до 100 кал/кв. см;- защитный уровень комплекта устанавливается не ниже максимально возможного уровня опасности на обслуживаемом оборудовании.Комплекты могут быть подразделены на уровни защиты в зависимости от параметров электрооборудования: I уровень - 5 кал/см 2 , II уровень - 20 кал/см 2 , III уровень - 40 кал/см 2 , IV уровень - 60 кал/см 2 , V уровень - 80 кал/см 2 , VI уровень - 100 кал/см 2 .Пример записи в технических условиях:- для комплекта: "Комплект для защиты от воздействия электрической дуги" (далее указываются тип, уровень защиты и модель изделия);- для костюма, входящего в комплект: "Костюм термостойкий для защиты от воздействия электрической дуги" (далее указываются модель изделия, наименование ткани и уровень защиты).

III. Общие требования

При приобретении и эксплуатации комплектов следует учитывать, что они являются средствами индивидуальной защиты (далее - СИЗ), которые:- обеспечивают комплексную защиту работника от вредных производственных факторов (общие загрязнения, пониженная и (или) повышенная температура, открытое пламя, электрическая дуга или сочетания этих факторов);- предназначены для выполнения работ в соответствии с перечнем профессий на протяжении рабочей смены как в закрытых помещениях, так и на открытой местности в летнее и зимнее время с учетом особенностей климатических поясов;- могут быть доукомплектованы защитой от проникновения клеща к телу пользователя при выполнении работ в районах возможного обитания энцефалитного клеща;- изготавливаются из материалов с постоянными термостойкими свойствами в мужском, женском, летнем и зимнем исполнении;- предусматривают термостойкую защиту головы, туловища, рук и ног пользователя;- имеют фурнитуру и детали отделки из химо-, термостойких материалов, защищенную от теплового воздействия слоями термостойкого материала.Защищая от воздействия высоких температур, комплект:- не наносит дополнительного вреда здоровью и жизни пользователя;- не выделяет едких газов и дымов;- не плавится, не воспламеняется и не поддерживает горение;- не оказывает токсического воздействия;- не вызывает аллергической реакции;- обеспечивает дополнительное время для ухода электротехнического персонала из опасной зоны и сводит к минимуму ожоги 2-й степени.Все входящие в состав комплекта изделия:- соответствуют действующим гигиеническим нормам;- сопровождаются сертификатами соответствия.

IV. Технические требования

В соответствии с требованиями действующего законодательства комплект подбирается в соответствии с характером опасности и условиями эксплуатации.Костюм, входящий в комплект, отвечает в части требований по:- огнестойкости и стойкости к воздействию конвективной теплоты и тепловому излучению - стандарту EN 531;- стойкости к тепловым факторам электрической дуги - международному стандарту IEC 61482-1;- защите от общих производственных загрязнений и пониженных температур - действующему законодательству.Материалы, из которых изготавливается костюм, входящий в комплект, отвечают следующим требованиям:- не обладают способностью самовоспламеняться, не поддерживают горение, не плавятся и не капают;- обеспечивают стойкость к воздействию конвективной и лучистой энергии, образованной электрической дугой;- сохраняют постоянство термостойких свойств на весь срок эксплуатации изделий;- стойки к сочетанию термических факторов риска;- не вызывают аллергии;- обеспечивают стойкость к вскрытию при воздействии электрической дуги. Примечание. Под вскрытием следует понимать разрыв защитного пакета, открывающий доступ к телу человека теплового потока и открытого пламени.Физико-механические свойства ткани верха костюма не должны быть хуже величин показателей, приведенных в таблице 1.Комплекты сохраняют свои защитные свойства и выдерживают не менее 50 стирок/химчисток на протяжении всего срока эксплуатации, определенного Типовыми отраслевыми нормами бесплатной выдачи одежды, специальной обуви и других средств индивидуальной защиты работникам организаций электроэнергетической промышленности (далее - Типовые нормы).В соответствии с Типовыми нормами эксплуатационные свойства комплекта обеспечивают работу персонала в летнее и зимнее время года на протяжении рабочей смены. Ресурс работы комплекта - не менее двух лет.

V. Испытания комплектов

5.1. Комплекты в установленном порядке подвергаются испытаниям на соответствие физико-механическим, эксплуатационным, гигиеническим и защитным показателям, а также требованиям по эргономике костюма. Испытания комплектов для защиты от воздействия электрической дуги на соответствие международным стандартам EN 531 и IEC 61482-1 осуществляются в аккредитованных лабораториях по утвержденной программе испытаний.

Таблица 1. Физико-механические свойства ткани верха костюма

Наименование показателя

Величина, мин. значение

Поверхностная плотность, не более, г/м 2
Стойкость к истиранию, не менее, цикл
Воздухопроницаемость, дм 2 ·м 2 ·с, не менее
Гигроскопичность, не менее, %
Изменение линейных размеров после стирки, %, не более
Стойкость крашения в баллах (устойчивость окраски) к стирке, не менее
При подготовке образцов к испытаниям рекомендуется обращать внимание на следующее:- орган по сертификации в установленном порядке отбирает со склада комплект каждого типа защиты в количестве, обеспечивающем полноту проведения испытаний;- все изделия предварительно маркируются для их дальнейшей идентификации;- испытывается каждый тип комплектов, а также каждый пакет тканей, соответствующий комплектам;- пакеты тканей маркируются для их идентификации с комплектами;- количество пакетов определяется полнотой проведения испытаний;- пакеты тканей на испытания предоставляются вместе с соответствующим им типом костюма;- размеры пакетов (образцов), подвергающихся испытаниям, соответствуют требованиям стандартов на методы испытаний;- для целей испытаний проводится 5 или 50 циклов стирок, если производителем допускается как стирка, так и химическая чистка. Стирка осуществляется согласно требованиям стандарта ГОСТ Р ИСО 6330, метод 2А, сушат методом Е (барабанная сушка)Для подтверждения устойчивости защитных свойств проводят сравнительные испытания летних костюмов и соответствующих им пакетов ткани до и после 50 стирок. 5.2. Испытания образцов, не подвергшихся стиркам, осуществляются согласно требованиям действующего законодательства, в том числе на соответствие:- физико-механическим показателям в части определения линейных размеров и изменения линейных размеров после стирок, разрывных и раздирающих характеристик, стойкости к истиранию, гигроскопичности, воздухопроницаемости.Испытания на соответствие защитным показателям проводятся после 5 циклов стирки в части:- определения стойкости к открытому пламени, к воздействию конвективного тепла, лучистой теплоты - согласно требованиям международного стандарта EN 531;- стойкости к тепловым факторам электрической дуги - согласно требованиям международного стандарта IEC 61482-1.5.3. Испытания образцов костюмов и соответствующих им пакетов ткани, подвергшихся 50-кратной стирке, должны отвечать требованиям действующего законодательства, в том числе на соответствие:- физико-механическим показателям;- защитным показателям.Испытания образцов на соответствие защитным показателям рекомендуется проводить по тем же методикам, на том же оборудовании и с теми же заданными параметрами электрической дуги, которые изложены в п. 5.2. При этом защитные показатели комплектов, полученные в результате испытаний до и после 50 стирок, не могут быть ухудшены более чем на 5 %. Физико-механические показатели, полученные в результате испытания до и после 50 стирок, не могут ухудшаться более чем на 20 %. Для подтверждения стойкости конструкции комплекта после 50 стирок к факторам электрической дуги на соответствие требованиям международного стандарта IEC 61482-1 испытывается как минимум один летний комплект определенного типа.

VI. Эргономика

При разработке комплекта рекомендуется учитывать:- эргономические требования, обеспечивающие удобство носки при повседневном использовании и соответствие требованиям действующего в стране законодательства;- потребитель комплектов может проводить производственные испытания (опытные носки) сроком, не превышающим срок эксплуатации изделий, определенный Типовыми отраслевыми нормами.Порядок и срок проведения испытаний определяется типовой программой и методикой проведения производственных испытаний.

VII. Комплектность, маркировка

В комплект могут входить следующие составляющие:- костюм термостойкий для защиты от воздействия электрической дуги (в том числе защитное белье: хлопчатобумажное или термостойкое);- термостойкие СИЗ головы, включая диэлектрическую каску и лицевой щиток с термостойкой окантовкой;- термостойкие СИЗ рук;- термостойкие СИЗ ног.Возможна раздельная поставка изделий, но пользователь обязан иметь полный комплект.При раздельной поставке изделий пользователю рекомендуется эксплуатировать комплект при наличии всех его составляющих.При приобретении и эксплуатации комплектов следует обращать внимание на то, что:- маркировка комплектов соответствует требованиям действующего законодательства;- комплекты (или их составляющие) имеют руководство по эксплуатации;- все составляющие комплектов имеют сертификаты соответствия.

VIII. Упаковка, транспортирование и хранение

Упаковка, транспортирование и хранение изделий, входящих в комплект, осуществляется в соответствии с действующим законодательством. При приобретении и эксплуатации комплектов следует учитывать, что они формируются из моделей костюмов различного типа по уровню защиты. Комплекты могут быть дополнены иными СИЗ в соответствии с действующим стандартами, типовыми нормами.Термостойкий костюм, белье и термоустойчивая обувь должны соответствовать размеру пользователя. Комплектующие изделия, имеющие регулировку, тщательно подгоняются. Белье, входящее в комплект, изготавливается из огнестойких материалов, соответствующих требованиям стандарта EN 531, IEC 61482-1, а также документов в области стандартизации Российской Федерации, принятыми в установленном порядке.При проведении работ, связанных с риском возникновения электрической дуги, пользователь обеспечивается комплексной защитой. При этом костюм полностью застегивается. Шея, лоб, щеки, руки находятся в термостойких изделиях, а ноги - в термоустойчивой обуви. Щиток (экран) закреплен на каске и опущен.Правила эксплуатации комплектов указываются в технических условиях на продукцию.

X. Гарантия изготовителя

При эксплуатации комплектов рекомендуется обращать внимание на то, что:- изготовитель гарантирует соответствие защитных свойств комплектов требованиям и техническим условиям на продукцию на срок не менее двух лет со дня поставки при соблюдении потребителем условий транспортирования, хранения и эксплуатации, установленных в эксплуатационных документах;- поставщик комплектов гарантирует соответствие качества изделий при соблюдении потребителем правил эксплуатации, ухода и хранения в течение 12 месяцев от даты их поставки.

XI. Требования безопасности и экологии

В соответствии с действующим законодательством:- комплекты не должны быть источником опасных и вредных производственных факторов;- утилизация комплектов и (или) их составляющих не должна наносить вреда экологии окружающей среды.
Поражающими факторами ядерного взрыва (ЯВ) являются: световое излучение, проникающая радиация, ударная волна, радиоактивное заражение. Электромагнитный импульс (ЭМИ) влияния на людей по понятным причинам не оказывает, зато выводит из строя электронное оборудование. Примерно половина всей энергии выходит в виде ударной волны, остальное - световое излучение, на долю проникающей радиации (гамма-лучей и нейтронов) приходится не более 5%. Такое разнообразие поражающих факторов говорит о том, что ЯВ представляет собой гораздо более опасное явление, чем взрыв аналогичного по энерговыходу количества обычной взрывчатки.
Пропорции распределения энергии ЯВ между этими поражающими факторами остаются примерно одинаковыми практически во всем диапазоне мощностей (разница составляет +/- 10%), поэтому возможно описать простыми соотношениями радиусы поражения для каждого из факторов в зависимости от мощности заряда:

Здесь: R L - радиус получения ожогов третьей степени (с омертвлением тканей) от светового излучения; R B - разрушения домов ударной волной; R R - получения дозы в 500 бэр от проникающей радиации; радиусы получаются в километрах; X - величина ЯВ в килотоннах. Для примера приведу небольшую табличку, созданную на основе этих формул:

О происхождении таких формул нетрудно догадаться: энергия рассеивается в пространстве, соответственно, в зависимости от типа поражающего фактора мы имеем тот или иной показатель степени:
Ударная волна - распределяет свою энергию по всему пройденному ей объему, поэтому сила ее уменьшается пропорционально кубическому корню от расстояния.
Световое излучение - распределяется лишь по площади сферы, и если бы не незначительное поглощение воздухом, убывало бы пропорционально квадратному корню.
Ионизирующие излучение интенсивно поглощается воздухом, поэтому при мощных взрывах его роль невелика. При слабых же наоборот, радиус поражения для него больше, чем для других факторов. Вот почему сила взрыва нейтронных зарядов, где оно - основной поражающий фактор, не превосходит нескольких кт - делать больше просто бесполезно.
В заключении этой части отметим, что при мощных взрывах, характерных для современных термоядерных зарядов наибольшее разрушение оказывает ударная волна, а далее всего распространяется световое излучение. На этом закончим и перейдем к подробному рассмотрению каждого из поражающих факторов ЯВ.

Световое излучение
Это поток световых лучей, исходящих из огненного шара. Видимые и инфракрасные лучи испускаются в течении от долей, до нескольких секунд, в зависимости от величины заряда. В течении этого времени, его интенсивность может превышать 1000 Вт/см 2 (максимальная интенсивность солнечного света - 0.14 Вт/см 2).
Световое излучение поглощается непрозрачными материалами, и может вызывать массовые возгорания зданий и материалов, а так же ожоги кожи и поражение глаз. Дальность распространения светового излучения сильно зависит от погодных условий. Облачность, задымленность, запыленность сильно снижают эффективный радиус его действия.
Практически во всех случаях испускание светового излучения из области взрыва заканчивается к моменту прихода ударной волны. Это нарушается лишь в области тотального уничтожения, где любой из трех факторов (свет, радиация, ударная волна) причиняет смертельный урон.
Световое излучение вызывает ожоги кожи, степень которых зависит от силы бомбы и удаленности от эпицентра:

Зависимость дистанции получения ожогов различной степени тяжести в зависимости от мощности:

O 1 - расстояние получения ожогов первой степени, O 2 - второй степени, O 3 - третьей степени; X - заряд в килотоннах; расстояние в километрах.
Для ожога I степени характерно покраснение и отек кожи. При ожогах II степени на фоне отечной кожи имеются пузыри разных размеров, наполненные прозрачной желтоватой жидкостью. Ожоги III степени сопровождаются омертвением глубоких слоев кожи, а при ожогах IV степени омертвевают кожа и подлежащие ткани (подкожная жировая клетчатка, мышцы, кости).
Поражения глаз. Наиболее вероятное повреждение зрения при ядерном взрыве - повреждение роговицы, в следствии теплового действия света и временная слепота, при которой человек теряет зрение на время от нескольких секунд до нескольких часов. Более серьезные повреждения сетчатки происходят, когда взгляд человека направлен непосредственно на огненный шар взрыва. Яркость огненного шара не изменяется с расстоянием (за исключением случая тумана), просто уменьшается его видимый размер. Таким образом, повредить глаза можно на практически любом расстоянии, на котором видна вспышка. Вероятность этого выше в ночное время, из-за более широкого раскрытия зрачка.
Световое излучение, как и любой свет, не проходит через непрозрачные материалы, поэтому для укрытия от него подойдут любые предметы, создающие тень. На расстояния, равные границе распространения ожогов третьей степени, ударная волна подходит от нескольких секунд, для небольшого взрыва, до минуты при мегатонном взрыве. Это время можно использовать для нахождения более надежного убежища.
Хорошо известно и такое явление, как оставление "теней" непрозрачными объектами на каком-либо фоне.

Образование "теней" происходит из-за выгорания (или, наоборот, обугливания) поверхности за непрозрачным предметом, в то время как в зоне его тени этого не происходит. В Хиросиме подобные тени оставались и от людей.

Проникающая радиация
Проникающая радиация - это поток гамма-лучей и нейтронов, испускаемый из области взрыва в течении нескольких секунд. Из-за очень сильного поглощения в атмосфере, проникающая радиация поражает людей только на расстоянии 2-3 км от места взрыва, даже для больших по мощности зарядов. Расстояния, пройдя которое поток ослабевает в 10 раз для различных величин взрывов:
1 кт: L = 330 м
10 кт: L = 440 м
100 кт: - L = 490 м
1 Мт: L = 560 м
10 Мт: L = 670 м
20 Мт: L = 700 м.
Таким образом, можно вычислить уровень радиации на любом расстоянии от эпицентра:

Doze - доза приникающей радиации в рад, D - расстояние в метрах, L - константа ослабления, X - мощность взрыва в килотоннах.
Действие радиации на организм, в долгосрочном плане проявляется мутациями, а в краткосрочном - лучевой болезнью различной степени тяжести. Ионизирующее излучение воздействует на клетки организма, вызывая разрушение их белковой структуры, это приводит к образованию свободных радикалов и других продуктов распада. Помимо смерти самой клетки, ее остатки вызывают общее отравление организма. Хотя клетка и имеет мощные возможности для самовосстановления, при интенсивном облучении не помогают и они.
Наиболее чувствительны к радиации интенсивно делящиеся клетки, т.к. если в момент деления будет разрушена одна клетка, то погибнут обе. Это ведет к истощению запаса этого типа клеток (если клетки интенсивно делятся, то они примерно с такой же скоростью и умирают). Таким образом, более всего страдают ткани костного мозга и лимфатической системы: эритроциты и лейкоциты постоянно обновляются в организме. Так же чувствительны клетки желудочно-кишечного тракта, клетки волосяного фолликула. Менее всего чувствительны к радиации неделящиеся клетки нервной системы. Из этого следует, дети и подростки более восприимчивы к радиации, чем взрослые, а наиболее чувствителен - эмбрион в утробе.
Действие проникающей радиации на человека ослабляется различными материалами. Ее уровень снижается в 10 раз после прохождения 11 см стали, либо 35 см бетона, либо 50 см грунта или кирпичной кладки, либо 1 м древесины.

Еденицы измерения радиации
Мерой ионизирующего действия является поглощенная единицей массы вещества энергия. Единицей этого является рад - поглощенная доза ионизирующего излучения, при которой облучаемое вещество массой 1 кг поглотит 0.01 Дж энергии. Степень поражения живой ткани радиацией зависит не только от поглощенной дозы, но и от "качества", природы излучения. Например, ионизирующая способность альфа-частиц, нейтронов, протонов в 10 раз превосходит гамма-лучей и электронов. Для оценки этого влияния вводится коэффициент биологического действия радиации:
Гамма- рентгеновские лучи: 1
Бета-излучение: 1
Альфа-излучение: 10 - 20 (при наружном/внутреннем облучении)
Быстрые нейтроны: 10 (в общем случае)
Быстрые нейтроны: 1 немедленное действие
Быстрые нейтроны: 4 - 6 развитие катаракты
Быстрые нейтроны: 10 развитие рака
Быстрые нейтроны: 20 развитие лейкоза
Скорректированная таким образом единица измерения, учитывающая действие на человека различных видов излучения, называется бэр (биологический эквивалент рентгена). Т.е. дозы, выраженные одинаковым числом бэр, вызывают одинаковый биологический эффект.
Кстати, широко известная единица измерения поглощенной энергии рентген является единицей действия только гамма- и рентгеновского излучения. Она соответствует поглощению 1 кг вещества 0.0094 Дж энергии.
Естественный радиационный фон, зависящий от высоты места, минерального состава почвы региона, находится в пределах 0.1 - 0.2 бэр/год. На горных вершинах, благодаря действию космических лучей фон увеличивается до 0.4 бэр/год. В некоторых местах, например в районах Бразилии, Индии, Шри-Ланки из-за повышенной концентрации радиоактивных пород доза годового облучения 0.5 - 12 бэр/год.

Воздействие различных доз радиации
При одномоментном облучении ионизирующем излучением возникает лучевая болезнь различной степени тяжести. Интересно отметить, что принятая как некая планка доза в 600 рад, летальная в большинстве случаев, для человека массой в 75 кг соответствует поглощению энергии в 450 Дж. При этом пуля массой 10 г, летящая на скорости 300 м/с (на излете траектории), имеет кинетическую энергию тоже в 450 Дж.
Менее 100 бэр.
Такие дозы не оказывают существенного влияния на здоровье. Изменения в составе крови начинаются с 25 бэр. Эти изменения включают в себя общие изменение содержания белых кровяных клеток (уменьшение лимфоцитов), уменьшение тромбоцитов, и небольшое уменьшение красных кровяных клеток, такое состояние определяется лишь по анализу крови и устанавливается в течении нескольких дней после облучения. Продолжительность изменений в организме - около месяца. При 50 бэр становятся заметными ослабление лимфатических желез, снижение иммунитета. 80 Бэр дают 50% вероятность временного бесплодия у мужчин.
100-200 бэр.
Симптомы умеренной степени тяжести. Возможна тошнота (в половине случаев при 200 бэр), иногда сопровождающаяся рвотой, появляющаяся через 3-6 часов после получения дозы и длящаяся от нескольких часов до дня. За этим следует период ремиссии, в течении которого пострадавший находится в нормальном самочувствии. Изменения в крови постепенно нарастают из-за естественной убыли и невосполнения кровяных клеток. Через 10-14 дней происходит следующее ухудшение самочувствия: потеря аппетита (у 50% при 150 бэр), недомогание, утомляемость (у 50% при 200 бэр) продолжающееся около месяца. В это время отмечается повышенная заболеваемость, из-за сниженного иммунитета, временное бесплодие у мужчин. Для доз из верхнего предела этого интервала клиническая картина сходная, за исключением меньшего периода ремиссии, более выраженных симптомов и большего периода выздоровления.
200-400 бэр.
Степень заболевания достаточно серьезна. Основной пораженной тканью организма остается кроветворная. Тошнота наблюдается у 100% пострадавших при облучении в 300 бэр, в половине случаев она сопровождается рвотой. Начальные симптомы выявляются уже после 1-6 часов и длятся 1-2 дня. После 7-14 дней ремиссии, они возвращаются, к ним может прибавиться потеря волос, недомогание, усталость, диарея. При дозах более 350 бэр появляются кровотечения изо рта, подкожные, гематурия - наличие крови в моче. Возможно постоянное бесплодие у мужчин, выздоровление занимает несколько месяцев.
400-600 бэр.
При таких дозах полученной радиации, смертность, без оказания серьезной медицинской помощи (пересадка костного мозга), резко идет вверх: от 50% при 350 бэр до 90% при 600. Первоначальные симптомы возникают в период от 30 мин до 2 часов и продолжаются до двух дней. После 1-2 недель появляются все признаки характерные для облучения в 200-400 бэр, только в гораздо более тяжелой форме. Смерть наступает после 2-12 недель от многочисленных кровоизлияний и заражения каким-либо заболеванием (иммунитет практически отсутствует). Период излечения - около года, состав крови нормализуется еще дольше. Может происходить развитие бесплодия у женщин.
600-1000 бэр.
Костный мозг отмирает практически полностью. Вероятность выжыть без его пересадки - отсутствует. Первоначальное ухудшение состояния наступает через 15-30 минут, и продолжается 2 дня. После 5-10 дней скрытого периода смерть наступает через 1-4 недели.
Более 1000 бэр.
Такие высокие дозы ионизирующего излучения вызывают немедленное нарушение обмена веществ, понос, кровотечения, потерю жидкости организмом и нарушение электролитного баланса.
При дозах 1000 - 5000 бэр это время уменьшается до 5-30 минут. Если удается пережить этот период, наступает фаза мнимого благополучия от пары часов до пары дней. Термальная фаза продолжается 2-10 дней, в течении ее больной впадает в прострацию, теряет аппетит, начинается кровавый понос. Пострадавший впадает в делирий, затем кому. Лечение таких доз направлено только на облегчение страданий умирающего.
Получение более 5000 бэр приводит к нарушением, затрагивающим непосредственно нервную систему. Человек моментально теряет ориентацию, чуть позже впадает в кому. Смерть наступает в течении двух суток.
Согласно оценкам, доза в 8000 бэр, например от нейтронной бомбы, ведет к моментальному впадению в кому и последующей смерти.

Ударная волна
Ударная волна представляет собой скачек уплотнения в атмосфере и движется со сверхзвуковой скоростью. Скачок уплотнения - это зона (очень небольшая), в которой происходит резкое (почти мгновенное) увеличение температуры, давления, плотности воздуха.

Помимо самого скачка давления за ним образуется спутный поток (сильный ветер). V ск, Р ск - скорость, давление развиваемое скачком уплотнения, V сп, Р сп - скорость спутного потока, давление спутного потока.
Ударная волна разрушает здания, сооружения и поражает незащищенных людей. Поражения, наносимые ударной волной непосредственно человеку, подразделяются на легкие, средние, тяжелые и крайне тяжелые. Легкие поражения характеризуются временным повреждением органов слуха, общей легкой контузией, ушибами и вывихами конечностей. Тяжелые поражения характеризуются сильной контузией всего организма; при этом могут наблюдаться повреждения головного мозга и органов брюшной полости, сильное кровотечение из носа и ушей, тяжелые переломы и вывихи конечностей.
Разрушения строительных сооружений, производимые избыточным давлением:
720 кг/м 2 (1 psi - фунт/кв. дюйм) - вылетают окна и двери;
2160 кг/м 2 (3 psi) - разрушение жилых домов;
3600 кг/м 2 (5 psi) - разрушение или сильное повреждение зданий из монолотного железобетона;
7200 кг/м 2 (10 psi) - разрушение особо прочных бетонных сооружений;
14400 кг/м 2 (20 psi) - выдерживают такое давление только специальные сооружения (типа бункеров).
Радиусы распространения этих зон давления можно рассчитать по следующей формуле:
R = C * X 0.333 ,
R - радиус в километрах, X - заряд в килотоннах, C - константа, зависящая от уровня давления:
C = 2.2, для давления 1 psi
C = 1.0, для давления 3 psi
C = 0.71, для давления 5 psi
C = 0.45, для давления 10 psi
C = 0.28, для давления 20 psi.

Радиоактивное заражение
Радиоактивное заражение - результат выпадения из поднятого на большую высоту облака взрыва огромного количества радиоактивных веществ - как ставших таковыми из-за наведенной радиоактивности, так и продуктов деления. Оседая на поверхность земли по направлению движения ветра, они создают радиоактивный участок, называемый радиоактивным следом. В зависимости от степени заражения этот участок условно делят на три зоны - умеренного, сильного и опасного заражения. Распад атомного ядра может пойти по 40 различным путям, с образованием 80 различных изотопов. Часть из них не радиоактивна, часть имеет очень короткий период полураспада, часть - очень длинный. Наибольшую опасность являют изотопы с периодом полураспада, измеряемым годами (а не днями или тысячами лет) - с одной стороны их активность достаточно велика, а с другой - сохраняется по меркам человеческой жизни очень долго, такие как цезий-137, стронций-89, 90, углерод-14, еще и трансурановые элементы - источники альфа-частиц.
Всего несколько кюри изотопа на км 2 делают район непригодным для проживания по современным нормам радиационной безопасности. Заряд мегатонного уровня производит достаточно радиоактивных веществ, чтобы покрыть территорию около 200 000 км 2 и сделать ее непригодной для хозяйственной деятельности.
При мощных взрывах (> 200 кт) столб гриба взрыва достигает верхних слоев стратосферы (30-40 км), что резко замедляет скорость выпадения осадков. Которые, при таких обстоятельствах, могут разноситься за сотни и тысячи километров от места взрыва.
Радиоактивное заражение характеризуется относительно невысоким уровне радиоактивности, но зато сохраняющимся в течении долгого периода времени и большой вероятностью попадания радиоактивных изотопов в организм человека. Это приводит к "отложенности" эффекта его проявления. Низкий фон позволяет организму восстанавливать поврежденные клетки, однако, в следствии долговременного облучения, существует вероятность "неправильной" починки или повреждения ДНК, в результате которого может развиться рак.
Для определения уровня радиоактивности после взрыва атомной бомбы деления хорошо подходит "правило семи". Оно состоит в том, что десятикратное снижение уровня радиоактивности происходит за увеличивающиеся в 7 раз промежутки времени. Так установившийся через 1 фон через 7 часов уменьшается в 10 раз. Через 7*7=49 ~ 2 дня радиация снижается в 100 раз по отношению к первому часу. После 7*2 дня = 2 недели уровень радиоактивности снизится еще на 90%, аналогично для 7* 2 недели = 3.5 месяца. Это правило соответствует отношению t -1.2 .

Типы и еденицы измерения радиоактивности
При распаде нестабильного изотопа испускается ионизирующее излучение. Оно бывает трех типов: альфа, бета, гамма. Испускаться может один или несколько из этих видов. Альфа-лучи состоят из положительно заряженных частиц - дважды ионизированных атомов гелия. Бета-лучи - это поток электронов. Гамма-лучи - высокоэнергетические фотоны.
Например, радий - излучает все три вида лучей, а стронций-90 - только бета. Для измерения радиоактивности наиболее часто используют кюри - 1 кюри - такое количество радиоактивного материала, что в нем происходит 3.7x10 10 распадов в секунду (как в 1 г радия-226).

Внешнее облучение
Внешнее облучение - это когда организм подвергается действию ионизирующего излучения, поступающего извне (короче говоря, человек не проглотил в себя радиоактивные изотопы). Выше уже говорилось о неодинаковости биологического эффекта действия различных видов лучей.
Тяжелые и неповоротливые альфа-частицы создают вокруг себя огромное количество ионов, но именно благодаря этому, их пробег в воздухе составляет несколько сантиметров, а задерживаться они могут листом бумаги или верхним слоем эпидермиса.
Бета-излучение обладает большей проникающей способностью, но все равно способно воздействовать исключительно на ткани организма, прилегающие к коже (в зависимости от энергии электрона глубина его проникновения от 1 мм до 1 см) и то, только на неприкрытые одеждой участки. Дезактивация (простое смывание с себя попавших на кожу частичек радиоактивных веществ, стрижка волос) способна практически исключить влияние этого типа радиоактивности. Но все же, если облучения не удалось избежать, развиваются такие симптомы: на коже ощущается зуд и чувство жжения во время первых 24-48 часов. Затем это проходит, но через 2-3 недели появляется покраснение, усиливается пигментация кожи. Затем следует выпадение волос.
При легком и умеренном течении болезни страдают только верхние участки кожи. Образуется корка, которая сменяется здоровой кожей, окруженной зоной усиленной пигментации. Нормальная пигментация восстанавливается в течении нескольких недель.
В тяжелых случаях появляются глубокие язвы. Излечение занимает месяцы.
Еще одна опасность от бета-лучей может состоять в том, что тормозясь в какой-либо металлической пластине, электроны рождают рентгеновское излучение, обладающее большой проникающей способностью.
Гама-излучение имеет очень большую проникающую способность, из-за чего облучению подвергаются все ткани организма.

Внутреннее облучение
Внутреннее облучение особо опасно - ведь в этом случае радиация действует изнутри непосредственно на клетки человека. Среди всех изотопов, находящихся в облаке взрыва, наибольший вред наносят изотопы углерода, йода, цезия и стронция.

I-131.
Йод-131 излучатель бета- и гамма-лучей с периодом полураспада 8.07 дней (активность 124 000 кюри/г). Его энергетика распада 970 кэВ, обычно распределена между 606 кэВ бета и 364 кэВ гамма. В следствии короткого времени жизни, йод представляет особую опасность в течении нескольких недель и опасность в несколько месяцев. Его удельное образование - примерно 2% от продуктов при взрыве бомбы деления - 1.6x10 5 кюри/кт. Йод-131 легко поглощается телом, в особенности щитовидной железой, и может стать причиной ее рака.

Cs-137.
Цезий-137 испускает бета- и гамма-излучение, со временем полураспада 30 лет (активность 87 кюри/г). Энергетика распада - 1.176 МэВ делится на: 514 кэВ энергия бета-частицы, 622 кэВ энергия гамма-кванта. Образуется его примерно 200 кюри/кт. Он представляет опасность в первую очередь как долговременный источник сильного гамма-излучения.
Цезий, как щелочной металл, имеет некоторое сходство с калием и распределяется равномерно по всему телу. Он может выводиться из организма - период его полувыведения около 50-100 дней.

St-89 и St-90.
Стронций-90 излучает только бета-частицы с энергией 546 кЭв, имеет период полураспада 28.1 года (активность 141 кюри/г), стронций-89 аналогично испускает электроны с энергией 1.463 МэВ, период полураспада 52 дня (активность 28200 кюри/г). Их выход при взрыве составляет 190 кюри Sr-90 и 3.8x10 4 Sr-89 на килотонну. Стронций-89 представляет опасность в течении нескольких лет после взрыва, стронций-90 остается в опасных концентрациях на столетия. Помимо излучение бета-частицы, распадающийся атом стронция-90 превращается в изотоп иттрия - иттрий-90, тоже радиоактивный, с периодом полураспада 64.2 часа, испускающего очень энергичный электрон при распаде - 2.27МэВ.
Поскольку стронций химически ведет себя подобно кальцию, он поглощается и накапливается в костях. Хотя большая его часть и выводится из организма (период полувыведения около 40 дней), чуть менее 10% стронция попадает в кости, период полувыведения из которых - 50 лет.
Безопасным считается содержание 2 микрокюри (14 нанограммов) стронция-90 в теле отдельного человека, а среднее его содержание у всех жителей не должно превышать 0.067 микрокюри. Это означает, что наличие 10 микрокюри Sr-90 в организме значительно увеличивает вероятность возникновения рака. Несколько тысяч испытанных мегатон в конечном итоге повысили содержание стронция в теле среднестатистического человека выше установленного предела для профессионального облучения на пару последующих поколений.

C-14 и T.
Изотопы углерод-14 и тритий (водород-3) не являются напрямую продуктами распада ядер тяжелых элементов. Они образуются при взрыве обычной атомной бомбы деления при взаимодействии испускаемых нейтронов с азотом воздуха:
N 14 + n -> T + C 12
N 14 + n -> C 14 + p
Тритий источник очень слабого бета-излучения (18.6 кэВ - примерно как в электронной трубки телевизора), период полураспада 12.3 года (активность 9700 кюри/г).
Углерод-14 также испускает слабое бета-излучение - 156 кэВ, период полураспада - 5730 лет (активность 4.46 кюри/г). При взрыве его создается примерно 3.4 г на килотонну (15.2 кюри/кт). По некоторым оценкам, атмосферные испытания в течении 1950-60-х годов привели к выбросу в атмосферу дополнительно 1.75 тонны (7.75x10 6 кюри) углерода-14. Для сравнения, до этого в природе находилось 1.2 тонны C-14: 1 т в атмосфере и 200 кг во всей биомассе планеты. Еще 50-80 тонн его были растворены в океане. Повышенные уровни этого изотопа обнаруживались в деревьях в течении 60-х годов.
C-14 и T - из-за того, что углерод и водород - основа белковой жизни, если такой радиоактивный элемент встроится в молекулу какого-либо белка, или ДНК, то распад его приведет к порче всей структуры молекулы. Поэтому попадание их в организм даже в незначительном количестве создает повышенную опасность мутаций.

Трансурановые источники альфа-излучения.
В ядерном оружии находятся заметные количества короткоживущих изотопов урана (U-232 и U-233) и трансурановые элементы Pu-239, Pu-240, Am-241. Из-за чрезвычайно большой ионизирующей способности альфа-частиц, при попадании внутрь эти элементы представляют собой серьезный риск для здоровья. Правда, после атомного взрыва их количество весьма невелико.
Если небольшая частичка попадает в легкие, она может остаться там и быть длительным источником облучения. Микрокюри альфа-излучателя производит облучение 3700 бэр/год легочной ткани, чрезвычайно увеличивая риск рака.
Уран и трансурановые элементы остеотропны (накапливаются в костной ткани). Если плутоний откладывается в костях, время его полувыведения около 80-100 лет, т.е. он остается там практически навсегда. Так же, плутоний накапливается в печени, с периодом полувыведения 40 лет. Максимальная допустимая концентрация Pu-239 в организме 0.6 микрограмма (0.0375 микрокюри) и 0.26 микрограмма (0.016 микрокюри) для легких.

Электромагнитный импульс
Ядерный взрыв производит огромное количество ионизированных частиц, сильнейшие токи и электромагнитное поле, называемое электромагнитным импульсом (ЭМИ). На человека оно не оказывает никакого влияния (по крайней мере в пределах изученного), зато повреждает электронную аппаратуру. Большое количество ионов, оставшихся после взрыва, мешает коротковолновой связи и работе радаров.
На образование ЭМИ очень значительное влияние оказывает высота взрыва. ЭМИ силен при взрыве на высотах ниже 4 км, и особенно силен при высоте более 30 км, однако менее значителен для диапазона 4-30 км. Это происходит из-за того, что ЭМИ образуется при несимметричном поглощении гамма-лучей в атмосфере. А на средних высотак как раз такое поглощение происходит симметрично и равномерно, не вызывая больших флуктуаций в распределении ионов.
Зарождение ЭМИ начинается с чрезвычайно короткого, но мощного выброса гамма-лучей из зоны реакции. На протяжении ~10 наносекунд в виде гамма-лучей выделяется 0.3% энергии взрыва. Гамма-квант, сталкиваясь с атомом какого-либо газа воздуха выбивает из него электрон, ионизируя атом. В свою очередь этот электрон сам способен выбить своего собрата из другого атома. Возникает каскадная реакция, сопровождающаяся образованием до 30 000 электронов на каждый гамма-квант.
На низких высотах, гамма-лучи, испущенные по направлению к земле, поглощаются ею, не производя большого количества ионов. Свободные электроны, будучи гораздо легче и проворнее атомов, быстро покидают область, в которой они зародились. Образуется очень сильное электромагнитное поле. Это создает очень сильный горизонтальный ток, искру, рождающую широкополосное электромагнитное излучение. В то же время, на земле, под местом взрыва, собираются электроны "заинтересовавшиеся" скоплением положительно заряженных ионов непосредственно вокруг эпицентра. Поэтому сильное поле создается и вдоль Земли.

И хотя в виде ЭМИ излучается очень незначительная часть энергии - 1/3x10 -10 , это происходит за очень короткий промежуток времени. Так что мощность, развиваемая им огромна: 100 000 МВт.
На больших высотах происходит ионизация расположенных ниже плотных слоев атмосферы. На космических высотах (500 км) область такой ионизации достигает 2500 км. Максимальная ее толщина - до 80 км. Магнитное поле Земли закручивает траектории электронов в спираль, образуя мощный электромагнитный импульс на несколько микросекунд. В течении нескольких минут между поверхностью Земли и ионизированным слоем возникает сильное электростатическое поле (20-50 кВ/м), пока большая часть электронов не будет поглощена вследствие процессов рекомбинации. Хотя пиковая напряженность поля при высотном взрыве составляет всего 1-10% от наземного, на образование ЭМИ уходит в 100 000 больше энергии - 1/3x10 -5 всей выделившейся, напряженность остается примерно постоянной под всем ионизированным районом.
Воздействие ЭМИ на технику. Сверхсильное электромагнитное поле индуцирует высокое напряжение во всех проводниках. ЛЭП будут фактически являться гигантскими антеннами, наведенное в них напряжение вызовет пробой изоляции и выход из строя трансформаторные подстанции. Выйдет из строя большинство специально не защищенных полупроводниковых приборов. В этом плане большую фору микросхемам даст старая добрая ламповая техника, которой нипочем ни сильная радиация, ни сильные электрические поля.

Антон Волков

На основе Section 5.0 Nuclear Weapons FAQ, Carey Sublette,

Необходимые приборы и принадлежности : термоэлектрический актинометр М-3, пиранометр универсальный М-80М, альбедометр походный, балансомер термоэлектрический М-10М, гелиограф универсальный модели ГУ–1, люксметр Ю-16.

Основным источником энергии, поступающей на Землю, является лучистая энергия, поступающая от Солнца. Поток электромагнитных волн, излучаемый Солнцем, принято называть солнечной радиацией. Эта радиация является практически единственным источником энергии для всех процессов, протекающих в атмосфере и на земной поверхности, в том числе и для всех процессов, происходящих в живых организмах.

Солнечная радиация обеспечивает растения энергией, которую они используют в процессе фотосинтеза для создания органического вещества, влияет на процессы роста и развития, на расположение и строение листьев, продолжительность вегетации и др. Количественно солнечную радиацию можно характеризовать потоком радиации.

Поток радиации – это количество лучистой энергии, которое поступает в единицу времени на единицу поверхности.

В системе единиц СИ поток радиации измеряется в ваттах на 1м 2 (Вт/м 2) или киловаттах на 1м 2 (кВт/м 2). Ранее она измерялась в калориях на 1 см 2 в минуту (кал/(см 2 ·мин)).

1кал/(см 2 ·мин) = 698 Вт/м 2 или 0.698 кВт/м 2

Плотность потока солнечной радиации на верхней границе атмосферы при среднем расстоянии от Земли до Солнца называют солнечной постоянной S 0 . По международному соглашению 1981 г. S 0 = 1.37 кВт/м 2 (1.96 1кал/(см 2 ·мин)).

Если Солнце не в зените, то количество солнечной энергии, падающей на горизонтальную поверхность, будет меньше, чем на поверхность, расположенную перпендикулярно лучам Солнца. Это количество зависит от угла падения лучей на горизонтальную поверхность. Для определения количества тепла, получаемого горизонтальной поверхностью в минуту, служит формула:

S′ = S sinh ©

где S′ - количество тепла, получаемое в минуту горизонтальной поверхностью; S – количество тепла, получаемое перпендикулярной к лучу поверхностью; h © – угол, образованный солнечным лучом с горизонтальной поверхностью (угол h называется высотой солнца).

Проходя через земную атмосферу, солнечная радиация ослабляется вследствие поглощения и рассеяния атмосферными газами и аэрозолями. Ослабление потока солнечной радиации зависит от длины пути, проходимого лучом в атмосфере, и от прозрачности атмосферы на этом пути. Длина пути луча в атмосфере зависит от высоты солнца. При положении солнца в зените солнечные лучи проходят самый короткий путь. В этом случае масса атмосферы, проходимая солнечными лучами, т.е. масса вертикального столба воздуха с основанием 1 см 2 , принимается за одну условную единицу (m = 1). По мере опускания солнца к горизонту путь лучей в атмосфере увеличивается, а следовательно, увеличивается и число проходимых масс (m> 1). Когда солнце находится у горизонта, лучи проходят в атмосфере наибольший путь. Как показывают расчеты, при этом m в 34,4 раза больше, чем при положении Солнца в зените. Ослабление потока прямой солнечной радиации в атмосфере описывается формулой Буге. Коэффициент прозрачности p показывает, какая доля солнечной радиации, поступающей на верхнюю границу атмосферы, доходит до земной поверхности при m = 1.

S m = S 0 p m ,

где S m – поток прямой солнечной радиации, дошедший до Земли; S 0 – солнечная постоянная; p – коэффициент прозрачности; m – масса атмосферы.

Коэффициент прозрачности зависит от содержания в атмосферы водяного пара и аэрозолей: чем их больше, тем меньше коэффициент прозрачности при одном и том же числе проходимых масс. Коэффициент прозрачности колеблется в пределах от 0,60 до 0,85.

Виды солнечной радиации

Прямая солнечная радиация (S′) – радиация, поступающая к земной поверхность непосредственно от Солнца в виде пучка параллельных лучей.

Прямая солнечная радиация зависит от высоты солнца над горизонтом, прозрачности воздуха, облачности, высоты места над уровнем моря и расстояния между Землей и Солнцем.

Рассеянная солнечная радиация (D) часть радиации, рассеянной земной атмосферой и облаками и поступающая на земную поверхность от небесного свода. Интенсивность рассеянной радиации зависит от высоты солнца над горизонтом, облачности, прозрачности воздуха, высоты места над уровнем моря, снежный покров. Очень большое влияние на рассеянную радиацию оказывают облачность и снежный покров, которые за счёт рассеивания и отражения падающей на них прямой и рассеянной радиации и повторного рассеивания их в атмосфере могут в несколько раз увеличить поток рассеянной радиации.

Рассеянная радиация существенно дополняет прямую солнечную радиацию и значительно увеличивает поступление солнечной энергии на земную поверхность.

Суммарная радиация (Q) – сумма потоков прямой и рассеянной радиаций, поступающих на горизонтальную поверхность:

До восхода, днем и после захода Солнца при сплошной облачности суммарная радиация поступает на землю полностью, а при малых высотах Солнца преимущественно состоит из рассеянной радиации. При безоблачном или малооблачном небе с увеличением высоты Солнца доля прямой радиации, в составе суммарной, быстро возрастает и в дневные часы поток многократно превышает поток рассеянной радиации.

Большая часть потока суммарной радиации, поступающего на земную поверхность, поглощается верхним слоем почвы, воды и растительностью. При этом лучистая энергия превращается в тепло, нагревая поглощающие слои. Остальная часть потока суммарной радиации отражается земной поверхностью, образуя отражённую радиацию (R). Почти весь поток отражённой радиации проходит атмосферу насквозь и уходит в мировое пространство, однако некоторая доля его рассеивается в атмосфере и частично возвращается на земную поверхность, усиливая рассеянную радиацию, а, следовательно, и суммарную радиацию.

Отражательная способность различных поверхностей называется альбедо . Оно представляет собой отношение потока отраженной радиации ко всему потоку суммарной радиации, падающему на данную поверхность:

Выражается альбедо в долях единицы или в процентах. Таким образом, земной поверхностью отражается часть потока суммарной радиации, равная QА, а поглощается и превращается в тепло – Q(1-А). Последняя величина называется поглощенной радиацией .

Альбедо различных поверхностей суши зависит главным образом от цвета и шероховатости этих поверхностей. Темные и шероховатые поверхности имеют меньшие альбедо, чем светлые и гладкие. Альбедо почв уменьшается с возрастанием влажности, так как цвет их при этом становится более темным. Значения альбедо для некоторых естественных поверхностей приведены в таблице 1.

Таблица 1 – Альбедо различных естественных поверхностей

Очень велика отражательная способность верхней поверхности облаков, особенно при большой их мощности. В среднем альбедо облаков около 50-60%, в отдельных случаях – более 80-85%.

Фотосинтетически активная радиация (ФАР) – часть потока суммарной радиации, которая может использоваться зелёными растения при фотосинтезе. Поток ФАР можно рассчитать по формуле:

ФАР = 0,43S′ + 0,57D,

где S′ - прямая солнечная радиация, поступающая на горизонтальную поверхность; D – рассеянная солнечная радиация.

Поток ФАР, падающий на лист, большей частью поглощается им, значительно меньшие доли этого потока отражаются поверхностью и пропускаются листом насквозь. Листья большинства древесных пород поглощают примерно 80%, отражают и пропускают до 10-12% от всего потока ФАР. Из поглощенной листьями части потока ФАР лишь несколько процентов лучистой энергии используется растениями непосредственно на фотосинтез и преобразуется в химическую энергию органических веществ, синтезированных листьями. Остальные, более 95% лучистой энергии, превращается в тепло и расходуется в основном на транспирацию, нагрев самих листьев и теплообмен их с окружающим воздухом.

Длинноволновое излучение Земли и атмосферы.

Радиационный баланс земной поверхности

Большая часть солнечной энергии, поступающей на Землю, поглощается её поверхностью и атмосферой, некоторая её часть излучается. Излучение земной поверхностью происходит круглосуточно.

Часть лучей, излучаемых земной поверхностью, поглощается атмосферой и таким образом способствует нагреванию атмосферы. Атмосфера в свою очередь посылает лучи обратно к поверхности земли, а также в космическое пространство. Это свойство атмосферы сохранять тепло, излучаемое земной поверхностью, называют оранжерейным эффектом . Разность между приходом тепла в виде встречного излучения атмосферы и расходом его в виде излучения деятельного слоя называется эффективным излучением деятельного слоя. Особенно большим эффективное излучение бывает ночью, когда потеря тепла земной поверхностью значительно превышает приток тепла, излучаемого атмосферой. Днём же, когда к излучению атмосферы добавляется суммарная солнечная радиация, получается избыток тепла, который идёт на нагревание почвы и воздуха, испарение воды и т.п.

Разность между поглощенной суммарной радиацией и эффективным излучением деятельного слоя называют радиационным балансом деятельного слоя.

Приходную часть радиационного баланса составляют прямая и рассеянная солнечная радиация, а также встречное излучение атмосферы. Расходную часть составляют отраженная солнечная радиация и длинноволновое излучение земной поверхности.

Радиационный баланс представляет собой фактический приход лучистой энергии на поверхность Земли, от которого зависит, будет происходить её нагревание или охлаждение.

Если приход лучистой энергии больше её расхода, то радиационный баланс положителен и поверхность нагревается. Если же приход меньше расхода, то баланс отрицателен и поверхность охлаждается. Радиационный баланс земной поверхности является одним из основных климатообразующих факторов. Он зависит от высоты Солнца, продолжительности солнечного сияния, характера и состояния земной поверхности, замутнённости атмосферы, содержания в ней водяного пара, наличия облаков и др.

Приборы для измерения солнечной радиации

Термоэлектрический актинометр М-3 (Рис.3) предназначен для измерения интенсивности прямой солнечной радиации на перпендикулярную к лучам солнца поверхность.

Приемником актинометра является термобатарея из чередующихся пластинок манганина и константана, выполненная в виде звездочки. Внутренние спаи термобатареи через изоляционную прокладку подклеены к диску из серебряной фольги, обращённая к солнцу сторона диска зачернена. Внешние спаи через изоляционную прокладку подклеены к массивному медному кольцу. От нагрева радиацией оно защищено хромированным колпачком. Термобатарея расположена на дне металлической трубки, которая при измерениях направляется на солнце. Внутренняя поверхность трубки зачернена, и в трубке устроены 7 диафрагм (кольцеобразных сужений), чтобы предотвратить попадание рассеянной радиации на приемник актинометра.

Для наблюдений стрелку на основании прибора 11 (рис. 2) ориентируют на север и для облегчения слежения за солнцем устанавливают актинометр по широте места наблюдений (по сектору 9 и риске в верхней части стойки прибора 10 ). Наводка на солнце производится с помощью винта 3 и рукоятки 6 , расположенных в верхней части прибора. Винт позволяет поворачивать трубку в вертикальной плоскости, при вращении рукоятки обеспечивается ведение трубки за солнцем. Для точной наводки на Солнце в наружной диафрагме сделано небольшое отверстие. Против этого отверстия в нижней части прибора имеется белый экран 5 . При правильной установке прибора солнечный луч, проникающий через это отверстие должен дать светлое пятно (зайчик) в центре экрана.

Рис. 3 Актинометр термоэлектрический М-3: 1 – крышка; 2, 3 – винты; 4 – ось; 5 – экран; 6 – рукоятка; 7 – трубка; 8 – ось; 9 – сектор широт; 10 – стойка; 11 – основание.

Пиранометр универсальный М-80М (Рис. 4) предназначен для измерения суммарной (Q) и рассеянной (D) радиации. Зная их, можно вычислить интенсивность прямой солнечной радиации на горизонтальную поверхность S′. Пиранометр М-80М имеет устройство, для опрокидывания стойки прибора приемником вниз, что позволяет измерить интенсивность отражённой радиации и определить альбедо подстилающей поверхности.

Приёмником пиранометра 1 является термоэлектрическая батарея, устроенная в форме квадрата. Приёмная поверхность ее окрашена в чёрный и белый цвета в виде шахматной доски. Половина спаев термобатареи находится под белыми, другая половина – под черными клеточками. Сверху приёмник закрыт полусферическим стеклом для защиты от ветра и осадков. Для измерения интенсивности рассеянной радиации приемник затеняется специальным экраном 3 . Во время измерений приёмник прибора устанавливается строго горизонтально, для этого пиранометр снабжён круглым уровнем 7 и установочными винтами 4. В нижней части приёмника размещена стеклянная сушилка, заполненная водопоглощающим веществом, которая предотвращает конденсацию влаги на приёмнике и стекле. В нерабочем состоянии приёмник пиранометра закрывается металлическим колпаком.

Рис. 4 Пиранометр универсальный М–80М: 1 – головка пиранометра; 2 – стопорная пружина; 3 – шарнир затенителя; 4 – установочный винт; 5 – основание; 6 – шарнир откидного штатива; 7 – уровень; 8 – винт; 9 – стойка с осушителем внутри; 10 – приёмная поверхность термобатареи.

Альбедометр походный (рис. 5) предназначен для измерения интенсивностей суммарной, рассеянной и отражательной радиаций в полевых условиях. Приемником является головка пиранометра 1 , установленная на самоуравновешивающийся карданный подвес 3 . Этот подвес позволяет установить прибор в двух положениях – приемником вверх и вниз, причем горизонтальность приемников обеспечивается автоматически. При положении приемной поверхности прибора вверх определяется суммарная радиация Q. Затем для измерения отраженной радиации R рукоятку альбедометра поворачивают на 180 0 . Зная эти величины можно определить альбедо.

Балансомер термоэлектрический М-10М (рис. 6) предназначен для измерения полного радиационного баланса подстилающей поверхности. Приемником балансомера является термобатарея квадратной формы состоящая, из множества медных брусков 5 , обмотанных константановой лентой 10 . Половина каждого винта ленты гальваническим путем посеребрена, начало и конец серебряного слоя 9 являются термоспаями. Половина спаев подклеивается к верхней, другая половина – к нижней приемным поверхностям, в качестве которых используются медные пластинки 2 , окрашенные в черный цвет. Приемник балансомера помещен в круглую металлическую оправу 1 . При измерениях он располагается строго горизонтально с помощью специального накладного уровня. Для этого приемник балансомера крепится на шаровом шарнире 15 . Для повышения точности измерений приемник балансомера может защищаться от прямой солнечной радиации круглым экраном 12 . Интенсивность прямой солнечной радиации измеряется в этом случае актинометром или пиранометром.

Рис. 5 Альбедометр походный: 1 – головка пиранометра; 2 – трубка; 3 – карданный подвес; 4 – рукоятка

Рис. 6 Балансомер термоэлектрический М-10М: а) – схематическое поперечное сечение: б) – отдельная термобатарея; в) – внешний вид; 1 – оправа приемника; 2 – приемная пластинка; 3, 4 – спаи; 5 – медный брусок; 6, 7 – изоляция; 8 – термобатарея; 9 – серебряный слой; 10 – константановая лента; 11 – рукоятка; 12 – теневой экран; 13, 15 – шарниры; 14 – планка; 16 – винт; 17 - чехол

Приборы для измерения продолжительности солнечного

сияния и освещённости

Продолжительность солнечного сияния есть время, в течение которого прямая солнечная радиация равна или больше 0,1 кВт/м 2 . Выражается в часах за сутки.

Метод определения продолжительности солнечного сияния основан на регистрации времени, в течение которого интенсивность прямой солнечной радиации достаточна для получения прожога на специальной ленте, укреплённой в оптическом фокусе шаровой стеклянной линзы, и составляет не менее 0,1 кВт/м 2 .

Продолжительность солнечного сияния измеряется прибором гелиографом (рис. 7).

Гелиограф универсальный модели ГУ–1 (рис. 7). Основанием прибора является плоская металлическая плита с двумя стойками 1 . Между стойками на горизонтальной оси 2 укреплена подвижная часть прибора, состоящая из колонки 3 с лимбом 4 и нижним упором 7 , скобы 6 с чашкой 5 и верхним упором 15 и стеклянного шара 8 , который является сферической линзой. На одном конце горизонтальной оси закреплён сектор 9 со шкалой широт. При перемещении горизонтальной оси 2 прибора с запада на восток и повороте верхней части прибора вокруг неё, ось колонки 3 устанавливается параллельно оси вращения Земли (оси мира). Для закрепления установленного угла наклона оси колонки служит винт 11 .

Верхняя часть прибора может поворачиваться вокруг оси колонки 3 и фиксироваться в четырех определенных положениях. Для этого используется специальный штифт 12 , который вставляется через отверстие лимба 4 в одно из четырёх отверстий диска 13 , закреплённого на оси 2 . Совпадение отверстий лимба 4 и диска 13 определяется по совпадению меток А, Б, В и Г на лимбе 4 с индексом 14 на диске.

Рис. 7 Гелиограф универсальный модели ГУ–1.

1 – стойка; 2 – горизонтальная ось; 3 – колонка; 4 – лимб; 5 – чашка; 6 – скоба; 7 – упор; 8 – стеклянный шар; 9 – сектор; 10 – указатель широты; 11 – винт для закрепления угла наклона оси; 12 – штифт; 13 – диск; 14 – индекс на диске; 15 – верхний упор.

На метеорологической площадке гелиограф устанавливается на бетонном или деревянном столбе высотой 2 м, на верхней части которого закреплена площадка из досок толщиной не менее 50 мм, так, чтобы при любом положении Солнца относительно сторон горизонта отдельные постройки, деревья и случайные предметы не затеняли его. Он устанавливается строго горизонтально и ориентирован по географическому меридиану и широте метеорологической станции; ось гелиографа должна быть строго параллельна оси мира.

Шар гелиографа должен содержаться в чистоте, так как наличие пыли, следов осадков, отложение росы, инея, изморози и гололёда на шаре ослабляет и искажает прожог на ленте гелиографа.

В зависимости от возможной продолжительности солнечного сияния запись за одни сутки должна производиться на одной, двух или трёх лентах. В зависимости от сезона должны применяться прямые или изогнутые ленты, которые следует закладывать в верхний, средний или нижний пазы чашки. Ленты для закладки в течение месяца должны подбираться одного цвета.

Для удобства работы с гелиографом к югу от подставки (столба) с прибором устанавливается лесенка с площадкой. Лесенка не должна касаться столба и должна быть достаточно удобной.

Люксметр Ю-16 (рис. 8) применяется для измерения освещённости, создаваемой светом или искусственными источниками света.

Рис. 8 Люксметр Ю–16. 1 – фотоэлемент; 2 – провод; 3 – измеритель; 4 – поглотитель; 5 – клеммы; 6 – переключатель пределов измерения; 7 – корректор.

Прибор состоит из селенового фотоэлемента 1 , соединённого проводом 2 с измерителем 3 , и поглотителя 4 . Фотоэлемент заключён в пластмассовый корпус с металлической оправой, для увеличения пределов измерения в 100 раз на корпус надевается поглотитель из молочного стекла. Измерителем люксметра является магнитоэлектрический стрелочный прибор, смонтированный в пластмассовом корпусе с окном для шкалы. В нижней части корпуса находится корректор 7 для установки стрелки на нуль, в верхней части – клеммы 5 для присоединения проводов от фотоэлемента и ручки переключения пределов измерения 6 .

Шкала измерителя разбита на 50 делений и имеет 3 ряда цифр соответственно трём пределам измерения - до 25, 100 и 500 люкс (лк). При использовании поглотителя пределы увеличиваются до 2500, 10000 и 50000 лк.

Во время работы с люксметром необходимо тщательно следить за чистотой фотоэлемента и поглотителя, при загрязнении их протирают ваткой, смоченной в спирте.

Фотоэлемент при измерениях располагается горизонтально. Корректором устанавливают стрелку измерителя на нулевое деление. Присоединяют фотоэлемент к измерителю и через 4-5 с проводят измерения. Для уменьшения перегрузок начинают с большего предела измерений, затем переходят на меньшие пределы, пока стрелка не окажется в рабочей части шкалы. Отсчёт снимают в делениях шкалы. При малых отклонениях стрелки для повышения точности измерений рекомендуется переключить измеритель на меньший предел. Для предупреждения усталости селенового фотоэлемента через каждые 5-10 мин работы прибора необходимо затенять фотоэлемент на 3-5 мин.

Освещенность определяется умножением отсчёта на цену деления шкал и на поправочный коэффициент (для естественного света он равен 0.8, для ламп накаливания -1). Цена деления шкалы равна пределу измерения, делённому на 50. При использовании одного или двух поглотителей полученную величину умножают, соответственно, на 100 или 10000.

1 Ознакомиться с устройством термоэлектрических приборов (актинометр, пиранометр, альбедометр, балансомер).

2 Ознакомиться с устройством гелиографа универсального, со способами его установки в различное время года.

3 Ознакомиться с устройством люксметра, измерить в аудитории освещенность естественную и искусственную.

Записи оформить в тетрадь.