Системы управления беспилотными аппаратами. Управление беспилотником (бпла) или "геймеры на войне"

Изобретение относится к области управления беспилотными летательными аппаратами (БПЛА) в чрезвычайных ситуациях. Технический результат изобретения заключается в обеспечении возможности приведения БПЛА как в радиоконтрастную точку, так и в точку, не имеющую радиолокационного контраста, без существенных аппаратных затрат при модернизации существующих систем. Система управления беспилотным летательным аппаратом содержит автопилот, бортовую электронно-вычислительную машину (БЭВМ), пульт предстартовой подготовки и ввода полетного задания, радиолокационный координатор с фазоманипулированным зондирующим сигналом, который содержит антенну, передатчик и приемник, дальномер, синхронизатор и устройство обработки сигналов, в состав которого входят фильтр сжатия сигналов, пороговое устройство, устройство фиксации координат, три переключателя, устройство фиксации максимума и блок формирования порога. 11 ил.

Изобретение относится к системам управления местоположением и курсом беспилотного летательного аппарата (БПЛА) и может быть использован при проектировании БПЛА, предназначенных для высокоточного приведения в заданную точку земной поверхности, в частности, для доставки груза в зараженные районы или на объекты, блокированные террористами. Известна система управления БПЛА , которая содержит радиолокационный визир (измеритель координат и параметров объекта назначения, или, иначе, координатор), измеритель координат и параметров движения управляемого объекта, устройство формирования сигналов управления, устройство обработки информации, радиовысотомер, блок задания порога, управляемый переключатель, устройство коррекции высоты и вертикальной скорости. В качестве измерителя координат и параметров движения управляемого объекта (БПЛА) использована система инерциальной навигации. Устройство формирования сигналов управления, включающее программный блок, устройство обмена информацией и вычислительные блоки, представляет собой бортовую электронно-вычислительную машину (БЭВМ), организующую процессы обмена информацией между элементами системы управления БПЛА и в соответствии с заложенными в ней алгоритмами принимающую решение об управлении БПЛА путем изменения или коррекции управляющих сигналов автопилота. Известная система управления достаточно эффективна при необходимости приведения БПЛА в радиоконтрастную точку или к радиоконтрастному объекту. Это достигается следующим образом. Координатор при помощи антенны сканирует пространство перед БПЛА и, анализируя отраженные сигналы по направлению и дистанции, определяет координаты искомого объекта по центру тяжести наблюдаемого двумерного массива (алгоритмы приведены, например, в [ 2, стр. 25]). Недостатком известной системы управления БПЛА является невозможность приведения БПЛА в такое место поверхности, которое не обладает радиолокационным контрастом на фоне окружающих его других объектов естественного и искусственного образования. Для приведения БПЛА в заданную точку земной поверхности, не обладающую радиолокационным контрастом, используются системы, которые объединены в литературе под общим названием корреляционно-экстремальные системы наведения . Сущность корреляционно-экстремальных систем заключается в том, что локатор осматривает участок поверхности под летательным аппаратом (локатор высотомера), сбоку от летательного аппарата (локатор бокового обзора), перед собой (локатор переднего обзора) или сзади (локатор заднего обзора). Результаты осмотра сравниваются с эталонной радиолокационной картой и по максимуму коэффициента корреляции наблюдаемого изображения и эталонной карты определяются координаты истинного местоположения БПЛА относительно заданной на момент измерения теоретической (или программной) точки его местонахождения. Эта разница координат используется при коррекции автопилота для дальнейшего программного полета БПЛА к заданной точке поверхности земли. Необходимым условием реализации подобных систем является наличие в них коррелятора, реализованного на универсальной (или специализированной) высокопроизводительной бортовой вычислительной машине или на основе оптического коррелятора. Во вновь проектируемых системах управления БПЛА, предназначенных для точного приведения к радиоконтрастным и к нерадиоконтрастным объектам, необходимо совмещать оба принципа наведения и соответственно нести суммарные аппаратные затраты на обычную обработку принимаемых сигналов (выделение сигнала на фоне шума, селекция помех и классификация наблюдаемых объектов, определения координат выбранной наиболее яркой точки) и на корреляционную обработку пространственного радиолокационного изображения. Однако при этом необходимо учитывать следующее. Реализация корреляционно-экстремальной системы требует применения локатора с высокой разрешающей способностью как по дистанции, так и по угловым координатам, т. е. требует локатора бокового обзора с синтезированной апертурой, либо локатора с узкой диаграммой направленности. В силу ограниченности размеров антенны на БПЛА приходится использовать миллиметровый диапазон радиоизлучений, который позволяет максимально сузить диаграмму направленности антенны и, соответственно, улучшить разрешающую способность по угловым координатам. Однако, дальность действия локатора миллиметрового диапазона в сильной степени зависит от погодных условий, что, в свою очередь, ограничивает его применение на БПЛА. Для устранения этого недостатка возможно использование многоканальных бортовых РЛС, использующих сразу два диапазона радиоизлучений: сантиметровый и миллиметровый. При этом сантиметровый диапазон обеспечивает большую дальность и всепогодность, а миллиметровый - лучшую точность на малой дистанции. Недостатком корреляционно-экстремальных систем с многоканальными бортовыми локаторами является существенное возрастание аппаратурных затрат. В модернизируемых системах управления БПЛА невозможно внести существенные изменения в аппаратуру, особенно в части введения дополнительных приборов и связей. Поэтому необходимо искать другие пути практической реализации первого (контрастный объект) или второго (неконтрастный объект) принципов управления наведения БПЛА. Наиболее близким аналогом, принятым в качестве прототипа предлагаемого изобретения, является система управления БПЛА, использующая в качестве координатора одноканальную бортовую РЛС сантиметрового диапазона с фазоманипулированным зондирующим сигналом . Кроме координатора система управления беспилотным летательным аппаратом содержит систему автопилотирования (автопилот), соединенную с бортовой ЭВМ, которая выполнена с возможностью подключения к пульту предстартовой подготовки и ввода полетного задания, который расположен в месте старта БПЛА. Координатор содержит передатчик, в котором формируется импульсный зондирующий сигнал с изменением фазы несущей частоты псевдослучайным двоичным кодом, антенну, кинематически связанную с приводом антенны, приемник, синхронизатор, дальномер (счетчик дальности) и устройство обработки сигналов, включающее фильтр сжатия сигналов, пороговое и устройство фиксации координат, формирующее сигналы дальности и углового положения отраженных сигналов, поступающих в БЭВМ. БЭВМ определяет координаты истинной цели, сопоставляет данные о местоположении БПЛА, измеренные автопилотом, с данными о местоположении истинной цели и формирует сигналы коррекции курса БПЛА, поступающие на автопилот. Преимуществом системы управления БПЛА с координатором, использующим фазоманипулированный сигнал, является более высокая точность сопровождения цели и более высокая помехозащищенность по отношению к активным и пассивным помехам, что известно, например, из . Недостатком системы управления по прототипу является ее низкая эффективность при необходимости приведения БПЛА к нерадиоконтрастному объекту-цели или в нерадиоконтрастную точку земной поверхности. Задачей изобретения является обеспечение возможности приведения БПЛА как к радиоконтрастным объектам-целям, так и к цели, не имеющей радиолокационного контраста, без существенных аппаратных затрат при модернизации существующих систем. Сущность изобретения заключается в том, что в системе управления беспилотным летательным аппаратом, содержащей автопилот, подключенный входом и выходом к первому выходу и второму входу бортовой электронно-вычислительной машины (БЭВМ), первый вход которой является входом для подключения к пульту предстартовой подготовки и ввода полетного задания, и радиолокационный координатор с фазоманипулированным зондирующим сигналом, который содержит антенну, кинематически связанную с приводом антенны, соединенные с антенной передатчик и приемник, гетеродинный выход которого подключен к соответствующему входу приемника, синхронизатор, дальномер, и устройство обработки сигналов, в состав которого входят фильтр сжатия сигналов, пороговое устройство и устройство фиксации координат, соответствующие входы которого подключены к выходу порогового устройства, выходу дальномера и информационному выходу привода антенны, а выходы, на которых формируются значения величин дистанции и углового положения отраженных сигналов, подключены к четвертому и пятому входам БЭВМ, шестой вход которой и вход передатчика подключены к выходу синхронизатора, передающему импульсную последовательность с частотой зондирования, выход синхронизатора, передающий последовательность импульсов синхронизации, подключен ко второму входу дальномера, первый вход которого и второй вход приемника по сигналу окончания зондирующего импульса подключены ко второму выходу передатчика, гетеродинный выход которого соединен с гетеродинным входом приемника, в устройство обработки сигналов дополнительно введены три переключателя, устройство фиксации максимума и блок формирования порога, управляющие входы которого по сигналу признака режима и сигналу задания масштаба подключены соответственно к пятому и седьмому выходам БЭВМ, выход подключен к уровневому входу порогового устройства, а соответствующие сигнальные входы - к выходам приемника, на которых формируются усредненное значение интенсивности шума и усредненное значение интенсивности отраженного сигнала, кодовый выход передатчика и выход видеосигнала приемника подключены к первым входам первого и второго переключателей, соответственно, вторые входы первого и второго переключателей соединены соответственно с третьим и четвертым выходами БЭВМ, на которых формируются последовательность бинарного массива измерений и последовательность эталонного бинарного массива, их управляющие входы соединены со вторым выходом БЭВМ, а выходы подключены соответственно к первому и второму входам фильтра сжатия сигналов, выход которого соединен с сигнальным входом третьего переключателя, управляющий вход которого подключен к шестому выходу БЭВМ, а выходы - к сигнальным входам порогового устройства и устройства фиксации максимума, а выход последнего, на котором формируется сигнал, характеризующий местоположение бинарного массива измерений на эталонной карте, соединен с третьим входом БЭВМ. В предлагаемой системе устройство обработки сигналов при работе по радионеконтрастным объектам сначала обнаруживает в просматриваемой зоне отраженные сигналы на фоне шума (т. е. сначала работает по своему прямому назначению), а затем переходит в режим сравнения и суммирования бинарных последовательностей, сформированных путем дополнительной пороговой обработки измеренного массива наблюдаемых сигналов и подготовленной заранее эталонной бинарной последовательности. По результатам этого сравнения определяются координаты зоны измерений координатора и положение БПЛА относительно заданной точки приведения. Сущность изобретения поясняется чертежами, на которых представлены: фиг.1 - структурная схема системы, фиг.2 - структурная схема бортовой электронно-вычислительной машины, фиг.3 - структурная схема фильтра сжатия сигналов, фиг. 4 - временные диаграммы сигналов на входах и выходе фильтра сжатия сигналов, фиг.5 - схема блока формирования порога, фиг.6 - схема устройства фиксации максимума, фиг.7 - графическое изображение зоны обзора координатора в стартовой системе координат, фиг. 8 - логико-временная диаграмма этапов функционирования системы управления в режиме приведения к нерадиоконтрастному объекту назначения, фиг. 9 - укрупненная схема алгоритма, реализуемого бортовой электронно-вычислительной машиной,
фиг.10, 11 - примеры зависимостей показателей оценок точности при приведении БПЛА к объектам различного назначения. На фиг. 1 структурной схемы системы управления БПЛА приняты следующие обозначения:
1 - антенное устройство,
2 - передатчик,
3 - приемник,
4 - синхронизатор,
5 - устройство обработки сигналов,
6 - бортовая электронно-вычислительная машина,
7 - автопилот,
8 - дальномер,
9 - пульт предстартовой подготовки и ввода полетного задания,
10 - фильтр сжатия сигналов,
11 - пороговое устройство,
12 - устройство фиксации координат,
13 - первый переключатель,
14 - второй переключатель,
15 - третий переключатель,
16 - устройство фиксации максимума,
17 - блок формирования порога. Согласно фиг.1 в системе управления БПЛА к первому выходу синхронизатора 4 (выходу импульсной последовательности с частотой зондирования) подключены вход передатчика 2 и шестой вход БЭВМ 6, а ко второму его выходу (последовательности синхронизирующих импульсов) - второй (счетный) вход дальномера 8, первый вход которого и второй вход приемника 3 (по сигналу окончания зондирующего импульса) подключены ко второму выходу передатчика 2. Первый (сигнальный) выход передатчика 2 подключен к антенне, сигнальный выход которой подключен к первому входу приемника 3, а информационный выход привода антенны подключен к третьему входу устройства 12 фиксации координат. Третий (гетеродинный) выход передатчика 2 соединен с третьим (гетеродинным) входом приемника, а его четвертый (кодовый) выход подключен к первому входу первого переключателя 13. Выход видеосигнала (первый) приемника 3 подключен к первому входу второго переключателя 14, а его второй выход, на котором формируется усредненное значение интенсивности шума (выход ШАРУ), и третий выход, на котором формируется усредненное значение интенсивности отраженных сигналов (выход АРУ), соединены со вторым и третьим (сигнальными) входами блока 17 формирования порога, выход которого соединен со вторым (уровневым) входом порогового устройства 11. Выход порогового устройства 11 соединен с первым входом устройства 12 фиксации координат, второй вход которого подключен к выходу дальномера 8, а первый и второй выходы, на которых формируются значения величин дистанции и углового положения отраженных сигналов, подключены соответственно к четвертому и пятому входам БЭВМ 6, первый выход и второй вход которой соединены с автопилотом 7, а первый вход является входом для подключения к пульту 9 предстартовой подготовки и ввода полетного задания. К первому и второму выходам третьего переключателя 15 подключены соответственно сигнальный (первый) вход порогового устройства 11 и вход устройства 16 фиксации максимума. Сигнальный (первый) вход третьего переключателя 15 подключен к выходу фильтра 10 сжатия сигналов, первый и второй входы которого соединены с выходами первого и второго переключателей 13 и 14, соответственно. Управляющие входы первого и второго переключателей 13, 14 подключены ко второму выходу БЭВМ 6, шестой выход которой соединен со вторым (управляющим) входом третьего переключателя 15, а пятый и седьмой выходы соединены соответственно с управляющим входом признака режима (первым) и управляющим входом задания масштаба (четвертым) блока 4 формирования порога. Третий вход БЭВМ 6 соединен с выходом устройства 16 фиксации максимума, на котором формируется сигнал, характеризующий местоположение бинарного массива измерений на эталонной карте, а третий и четвертый выходы БЭВМ 6, с которых передаются последовательность бинарного массива измерений и последовательность эталонного бинарного массива, подключены ко вторым сигнальным входам соответственно первого и второго переключателей 13 и 14. Антенное устройство 1, передатчик 2, приемник, синхронизатор 4, дальномер 8 и устройство 5 обработки сигналов образуют радиолокационный координатор системы управления БПЛА. Антенное устройство 1 является головной частью координатора и содержит одно- или двухзеркальную антенну сантиметрового диапазона с симметричной узкой (насколько позволяют конструктивные размеры БПЛА) диаграммой направленности. Антенна закреплена в кардановом подвесе, снабженном двумя следящими приводами, которые могут поворачивать ее вокруг горизонтальной и вертикальной оси, обеспечивая сканирование диаграммы направленности в вертикальной и горизонтальной плоскостях. Датчики угла поворота антенны вокруг вертикальной и горизонтальной осей, выполненные, например, в виде потенциометров или цифровых оптико-электронных преобразователей угол-код, вырабатывают информационные сигналы углового положения антенны относительно корпуса летательного аппарата в текущий момент времени: a - угол поворота в горизонтальной плоскости и a - угол поворота в вертикальной плоскости. Управление антенной в обеих плоскостях идентично, поэтому, для простоты изложения, в дальнейшем рассматривается только поворот в горизонтальной плоскости. Подробно построение системы управления антенной радиолокационного координатора изложено, например, в . Для обзора пространства перед БПЛА на вход следящих приводов антенны подается пилообразный управляющий сигнал периодического сканирования антенны в соответствующей плоскости. Этот сигнал может формироваться непосредственно внутри антенного устройства при помощи интегрирующего операционного усилителя в аналоговом виде, реверсивного счетчика синхроимпульсов в цифровом виде или в бортовой ЭВМ. Передатчик 2 выполнен в виде усилительной цепочки на лампе бегущей волны (ЛБВ), на входе которой несущая частота возбудителя модулируется по фазе псевдослучайной - последовательностью, формируемой генератором кода и фазовым манипулятором (Яковлев В.В., Федоров Р.Ф. Стохастические ВМ, Л., Машиностроение, стр. 147-153, 1974 г.). Частота повторения и длительность зондирующих импульсов передатчику задается синхронизатором 4. Импульс, соответствующий моменту окончания зондирующего импульса, формируется на управляющем выходе усилителя мощности, который служит вторым выходом передатчика, а сигнальный выход усилителя мощности образует первый выход передатчика. Выход гетеродинной частоты возбудителя образует третий выход передатчика, а выход генератора кода, на котором формируется кодовая последовательность изменения фазы несущей частоты каждого излучаемого сигнала - u 1 , образует четвертый выход передатчика. Пример реализации передатчика с фазоманипулированным сигналом и входящих в него блоков известен, например, из . Приемник 3 выполнен в виде последовательно соединенных усилителя высокой частоты, смесителя, второй вход которого образует гетеродинный (третий) вход приемника, усилителя промежуточной частоты (УПЧ) и видеоусилителя. Варианты построения приемника PJIC с фазоманипулированным сигналом изложены в . Важным обстоятельством является обязательное наличие в приемнике автоматической регулировки уровня шумов (ШАРУ) и автоматической регулировки усиления (АРУ). Первый выход приемника 3 - основной выход видеоусилителя, на котором формируется последовательность u 2 сигналов, отраженных от наблюдаемых объектов, второй выход - выход схемы ШАРУ, на котором формируется аналоговый (возможен вариант дискретной схемы и цифрового выхода) сигнал a ш, величина которого пропорциональна усредненному значению (уровню) интенсивности шума отраженных сигналов, третий выход - выход схемы АРУ, на котором формируется сигнал a с, пропорциональный усредненному значению интенсивности отраженных сигналов. Бортовая ЭВМ 6 представляет собой универсальную ЭВМ, которая с разделением во времени воспринимает информацию по шести входам и вырабатывает на соответствующих выходах с первого по седьмой информационные или управляющие сигналы. Примеры ЦВМ приведены в . В частности, может использоваться Micro PC фирмы " Octogon". Структурная схема одного из возможных вариантов построения БЭВМ 6 приведена на фиг.2 . Эта структура построена с использованием трех интерфейсных магистралей 18, 19, 20 информационного обмена, каждая из которых через соответствующий контроллер 21, 22, 23 прямого доступа к памяти связана с системной интерфейсной магистралью 24 памяти и внутренней интерфейсной магистралью 25 процессора. Процессор 26 непосредственно соединен с обеими магистралями 24, 25, а блок 27 памяти (ДЗУ) - только с магистралью 24. К первой интерфейсной магистрали 18 информационного обмена подключены три адаптера 28, 29, 30 внешних устройств, через которые осуществляется связь с пультом 9 предстартовой подготовки (адаптер 29) и с автопилотом 7 (адаптеры 28 и 30). Ко второй интерфейсной магистрали 19 подключены адаптеры 31, 32, 33 внешних устройств, принимающие соответствующие сигналы радиолокационного координатора, которые поступают на третий, четвертый и пятый входы БЭВМ 6, а через группу адаптеров 34,...,40, внешних устройств, подключенных к третьей информационной магистрали 20 и образующих выходы БЭВМ со второго по седьмой, осуществляется передача соответствующих управляющих и информационных сигналов в устройство 5 обработки сигналов радиолокационного координатора. Процессор 26 управляет подготовкой программ и размещением их в блоке 27 памяти, инициирует в определенные моменты времени через свою внутреннюю интерфейсную магистраль 25 и соответствующую магистраль 18 (19, 20) информационного обмена работу с нужным внешним устройством, указывая при этом через контроллер 21 (22, 23) прямого доступа к памяти место в блоке 27 памяти, где хранится необходимая программа. По завершении программы обратная связь с каналами осуществляется с помощью программного прерывания также через внутреннюю интерфейсную магистраль 25. Использование приведенной структуры обеспечивает увеличение вычислительной мощности БЭВМ за счет того, что процессор 26 не участвует в операциях ввода-вывода, а только инициирует работу каналов и контролирует логико-временную диаграмму работы БЭВМ. Возможны и другие варианты построения бортовой вычислительной машины и связи ее с внешними устройствами. Широко распространена, например, ЭВМ с магистральным интерфейсом (ГОСТ 26765.52-67). Однако, тип связи ЦВМ с внешними устройствами принципиального значения для существа изобретения не имеет. Автопилот 7 или бортовая навигационная система представляет собой систему гироскопических приборов (в простейшем случае гироазимут, гирогоризонт и три гироинтегратора), измеряющих пройденный путь в стартовой системе координат: Х - направление полета, заданное в точке старта, Y - высота полета, Z - боковое отклонение от вертикальной плоскости, совпадающей с направлением полета, заданным в точке старта, или, иначе, плоскости стрельбы. При отклонении измеряемых автопилотом текущих координат Y t и Z t при X t от значений, заданных полетным заданием, автопилот автономно или при помощи бортовой ЭВМ выдает управляющие сигналы на рулевые органы, при помощи которых приводятся в соответствие боковое отклонение от плоскости стрельбы Z t =Z n и высота полета Y t = Y n . Сведения, необходимые для реализации автопилота, приведены, например, в . Известно также, что для управления БПЛА по высоте часто используется высотомер, показания которого в вертикальной плоскости могут оказаться точнее, чем у гироинтегратора, однако для существа предлагаемого изобретения это не имеет значения. По этой причине дальнейшее описание ограничивается только рассмотрением управления беспилотным летательным аппаратом в горизонтальной плоскости. Для задания программы движения БПЛА в боковой плоскости часто используют установку нуля гироскопических приборов в азимутальной плоскости, совпадающую с направлением на цель - (плоскость стрельбы). В этом случае автопилот отрабатывает возмущения, сводя рассогласование Z (отклонение от плоскости стрельбы) к нулю. Путь, проходимый БПЛА по оси X, в этом случае соответствует текущей дистанции Dt от места старта до БПЛА. Конечная точка полета задается дистанцией Dк. Дальномер 8 в рассматриваемой системе представляет собой счетчик синхроимпульсов, поступающих со второго выхода синхронизатора 4. Обнуление и запуск счетчика происходит по сигналу со второго выхода передатчика 2, поступающему на первый вход дальномера 8. Выход счетчика является выходом дальномера 8. Выходной сигнал дальномера в последовательном или параллельном коде несет информацию о времени З, которое прошло после окончания импульса излучения. Измеряемая дискретность или цена младшего разряда счетчика составляют, например, 0,1 мкс, что соответствует дистанции 15 м. Число разрядов счетчика соответствует максимальной дистанции возможного наблюдения объекта-цели или периоду повторения зондирующих импульсов передатчика 2. В аналоговом исполнении дальномер 8 выполняется на интегрирующем операционном усилителе, формирующем пилообразное напряжение с периодом следования зондирующих импульсов. В этом случае величина выходного сигнала дальномера 8 пропорциональна времени, истекшему с момента окончания зондирующего импульса. Пульт 9 предстартовой подготовки и ввода полетного задания предназначен для проверки исправности всех бортовых систем БПЛА и ввода в БЭВМ 6 полетного задания. Перед запуском БПЛА все бортовые приборы получают электропитание от внешнего источника и по результатам тестовой проверки выдают обратные сигналы готовности (или неисправности), по которым оператор принимает решение о возможности запуска БПЛА. После проверки исправности всех бортовых систем и агрегатов в память бортовой ЭВМ 6 транслируется полетное задание в виде программы траектории полета. При этом в табличной, аналитической или смешанной форме вводится планируемый маршрут, задаваемый в виде зависимостей координат Y(X) и Z(X), где Х - продольная координата в плоскости стрельбы, Y - высота полета и Z - боковое отклонение от плоскости стрельбы. При помощи пульта 9 выставляется начальное положение гироприборов автопилота, соответствующее выбранной плоскости стрельбы. Кроме этого, при помощи пульта 9 вводятся в бортовую ЭВМ основные параметры логико- временной диаграммы и режимов работы бортовой аппаратуры. Аппаратура предстартовой проверки и ориентации гироскопических приборов известна, например, из . Собственно пульт представляет собой терминал оператора, который содержит клавиатуру, монитор и центральный прибор управления и связи, включающий ЭВМ, ДЗУ. ОЗУ и адаптеры, организованные в сеть посредством интерфейсных магистралей. Примером одной из возможный реализации пульта 9 может служить схема пульта оператора корабельной боевой информационно-управляющей системы . Фильтр 10 сжатия сигналов, структурная схема которого приведена на фиг. 3, содержит запоминающий регистр 41 и сдвиговый регистр 42, выходы которых поразрядно подключены ко входам многоразрядного элемента 43 исключения ИЛИ, выход которого образует выход фильтра 10 сжатия сигналов. Входы регистров 41 и 42 образуют первый и второй входы фильтра 10. Эпюры, поясняющие работу фильтра сжатия, приведены на фиг.4, где обозначено: u 1 - кодовая последовательность изменения фазы несущей частоты излучаемого сигнала на первом входе фильтра 10, u 2 - последовательность отраженных сигналов с видеовыхода приемника на втором входе фильтра 10, u 3 - выходной сигнал фильтра 10. Пороговое устройство 11 выполнено, например, в виде компаратора - усилителя постоянного тока с дифференциальным входом без внешней обратной связи. На его второй вход подается уровневый сигнал с выхода блока 17 формирования порога, который определяет уровень порога срабатывания компаратора, а на первый вход - сигнал u 3 с выхода фильтра сжатия. Если величина сигнала u 3 на выходе фильтра сжатия больше порогового значения U пop, то на выходе порогового устройства 11 появится нормированный сигнал постоянной амплитуды длительностью .
Устройство 12 фиксации координат представляет собой схему совпадения сигнала задержки времени З, поступающего с выхода дальномера, и сигналов углового положения антенны a , поступающих с датчиков угла поворота антенны 1, с управляющим сигналом - импульсом с выхода порогового устройства 11. При наличии управляющего импульса происходит запись величин на соответствующие выходные регистры дистанции до объекта-цели Dц = c З /2 (с - скорость распространения электромагнитного излучения) и угла a (аналогично, при необходимости угла a). При аналоговом исполнении системы схема совпадения может быть выполнена на пик-детекторах, а в дискретно-цифровом варианте - в виде триггерных регистров. Число пик-детекторов или выходных регистров в устройстве 12 фиксации координат определяется максимально возможным (допустимым для данного БПЛА) числом одновременно наблюдаемых объектов-целей, среди которых по определенным признакам (например, по их взаимному расположению) определяется объект назначения, на который наводится БПЛА. Для БПЛА, приводимых к радиоконтрастным точкам или объектам, максимальное число возможных наблюдаемых объектов равно, например, 20. Этим ограничено число выходных регистров дистанции D и угла a наблюдения (визирования) объекта. Переключатели 13, 14 и 15 представляют собой обычные двухпозиционные реле (контактные электромеханические или бесконтактные электронные). Управляющие входы переключателей 13 и 14 подключены ко второму выходу БЭВМ 6, а управляющий вход переключателя 15 - к ее шестому выходу. С этих выходов выдаются команды на переключение в режим приведения БПЛА к неконтрастному объекту после радиолокационного обзора. Нормально-замкнутые контакты переключателя 13 коммутируют сигнал кодовой последовательности изменения фазы зондирующего сигнала с передатчика 2 на вход запоминающего регистра 41 (первый вход фильтра 10 сжатия сигналов), а нормально-разомкнутые контакты этого ключа коммутируют на его вход последовательность бинарного массива измерений с третьего выхода БЭВМ 6. Нормально-замкнутые контакты ключа 14 коммутируют выход видеосигнала приемника 3 на вход сдвигового регистра 42 (второй вход фильтра 10 сжатия сигналов), а нормально-разомкнутые контакты этого ключа коммутируют на вход сдвигового регистра 42 кодовую последовательность эталонного бинарного массива с четвертого выхода БЭВМ 6. Нормально-замкнутые контакты переключателя 15 коммутируют выходной сигнал фильтра 10 сжатия сигналов на вход порогового устройства 11, а нормально-разомкнутые - на вход устройства 16 фиксации максимума. Блок 17 формирования порога выполнен по схеме, приведенной на фиг.5, где обозначены:
44 - двухпозиционное реле, 45 - масштабирующий усилитель, 46 - трехпозиционное поляризованное реле, R 1 ,..., R 8 - резисторы. Двухпозиционное реле 44 предназначено для переключения на вход масштабирующего усилителя 45 сигнала среднего значения интенсивности шума а ш со второго входа блока 17 формирования порога или (при наличии на управляющем входе сигнала признака режима) усредненного значения интенсивности сигнала а с с третьего входа блока 17. Трехпозиционное поляризованное реле 46 предназначено для переключения резисторов в цепи обратной связи усилителя 45. Коэффициент передачи среднего значения шума а ш со второго входа блока 17 на его выход определяется отношением (R 5 +R 6)/(R 1 +R 3), а среднего значения сигнала а c с третьего входа блока 17 на его выход при отсутствии управляющего сигнала на четвертом входе, соответственно, отношением (R 5 +R 6)/(R 2 +R 3). При наличии положительного управляющего сигнала на поляризованном реле 46 коэффициент передачи блока 17 формирования порога возрастает и соответствует отношению (R 5 +R 6 +R 7)/(R 1 +R 3), а при отрицательном управляющем сигнале на коэффициент передачи уменьшается и равен отношению R 7 /(R 1 +R 3). Резистор R 8 необходим для предотвращения перегрузки усилителя 45 в моменты размыкания контактов реле 46. Величина сигнала на выходе блока 17 формирования порога определяет величину порога U пop порогового устройства 11. Устройство 16 фиксации максимума может быть реализовано в аналоговом или цифровом виде. Пример его реализации в аналоговом виде приведен на фиг.6, где обозначены: 47 - операционный усилитель, 48 - дифференциальный усилитель, R 9 ,..., R 14 - резисторы, Д 1 - диод, C 1 , C 2 - конденсаторы. Устройство 16 фиксации максимума содержит последовательно соединенные пик-детектор (Д 1), интегрирующую цепочку R 9 C 1 , согласующий операционный усилитель 47, коэффициент усиления которого определяется отношением R 11 /R 10 , дифференцирующую цепочку C 2 R 12 , резистор R 13 и согласующий дифференциальный усилитель 50. Порог срабатывания усилителя 50 определяется величиной напряжения смещения, в качестве которого может использоваться напряжение питания усилителя, и отношением R 14 /R 15 . Входом устройства 16 фиксации максимума служит вход детектора Д 1 , а выходом - выход дифференциального усилителя 50. В зависимости от типа объекта назначения (радиоконтрастный или нерадиоконтрастный) система управления беспилотным летательным аппаратом работает в одном из двух режимов наведения, которые задаются в виде признака режима и вводятся в полетное задание перед стартом БПЛА с пульта 9 предстартовой подготовки и ввода полетного задания. В режиме приведения БПЛА к радиоконтрастному объекту (в полетном задании Реж=1) на втором и шестом выходах БЭВМ 6 отсутствуют управляющие сигналы, на пятом выходе отсутствует управляющий сигнал признака режима, на седьмом - сигнал задания масштаба, а на третий вход БЭВМ 6 не поступает сигнал с устройства 16. Приведение БПЛА к объекту назначения производится при помощи радиолокационного координатора, который в этом режиме работает следующим образом. Антенна 1 сканирует пространство перед БПЛА. Передатчик 2 с заданной синхронизатором 2 частотой излучает фазоманипулированные зондирующие импульсы. Код последовательности изменения фазы несущей частоты u 1 через нормально-замкнутые контакты переключателя 13 поступает в запоминающий регистр 41 фильтра 10 сжатия сигналов и запоминается в нем. На второй вход фильтра 10 поступает видео- сигнал сигнал с первого выхода приемника 3, представляющий собой последовательность сигналов u 2 , обновляемую путем сдвига через каждый дискрет времени . При длительности одного дискрета зондирующего импульса = 1 мкс частота обновления составляет 1 МГц, а при длительности 0,1 мкс, соответственно, 10 МГц. При длительности зондирующего сигнала Т=40 мкс и = 0,1 мкс число ячеек регистров 41 и 42 составляют 400. Сигналы регистров 41 и 42 сравниваются параллельно для каждой пары ячеек, и сумма совпадений определяет величину сигнала u 3 на выходе фильтра 10 сжатия. Максимальным значение выходного сигнала u 3 будет в момент времени, когда модуляция (манипуляция) приемного сигнала совпадает (точнее, будет иметь максимальное соответствие) с зондирующим сигналом. Далее выходной сигнал с фильтра 10 сжатия сигналов через нормально-замкнутые контакты переключателя 15 поступает на сигнальный вход порогового устройства 11, в котором сравнивается уровневым значением U пop , задаваемым блоком 17 формирования порога. Если величина сигнала u 3 на выходе фильтра сжатия больше порогового значения U пop , то на выходе порогового устройства 11 появится нормированный сигнал постоянной амплитуды длительностью .
Величина порога U пop обнаружения сигнала, выше которой сигнал считается обнаруженным, определяется заданным уровнем ложной тревоги, путем оценки а ш - среднего уровня интенсивности принимаемого шума. Схема ШАРУ приемника 3 регулирует усиление приемника таким образом, чтобы среднее значение шума было заданной величины, т.е. поддерживает постоянным величину а ш. Отношение U пop /а ш определяется заранее на основе анализа закона распределения амплитуды шумовых выбросов и составляет величину порядка 8-10, так как вероятность ложной тревоги задается малой величиной 10 -5 -10 -6 . Таким образом, величина уровня срабатывания порогового устройства в режиме обнаружения отраженных сигналов связана с сигналом ШАРУ масштабным коэффициентом. Например, если сигнал ШАРУ, равный среднему значению шума приемника, составляет 0,1 В, то величина порога обнаружения составит 1 В. Эта величина порога транслируется на уровневый вход порогового устройства 11 через нормально-замкнутые контакты двухпозиционного реле 44 и масштабирующий усилитель 45 блока 17 формирования порога. Устройство 12 фиксации координат осуществляет запись величин дистанции и углового положения сигналов от объекта или элементов объекта, превысивших пороговый уровень, и передает эти величины на четвертый и пятый входы БЭВМ 6. В БЭВМ 6 анализируются взаимное положение отраженных сигналов по дистанции и углу, после чего определяются координаты искомого объекта, например, по центру тяжести наблюдаемого двумерного массива, как это показано на фиг. 7, где обозначены:
- угол сканирования антенны в горизонтальной плоскости;
c - центр зоны сканирования, совпадающий с продольной плоскостью БПЛА;
ц - направление на объект - цель;
D - дистанция; D ц - дистанция до объекта - цели. Серым цветом на фиг.7 обозначена область параметров D и , где осуществляется поиск, обнаружение и сопровождение объектов-целей. За координаты цели D ц, ц принимается "блестящая" точка (элемент разрешения с откликом сигнала, ближайший по координате к "центру тяжести" наблюдаемых сигналов в плоскости D, ).

где n - номер обнаруженного сигнала (объекта или его элемента);
N - число обнаруженных сигналов на одном обзоре. Координаты объекта-цели Х ц, Z ц в стартовой системе координат определяются соотношениями:
X ц = X t +D ц cos( ц);
Z ц = Z t +D ц sin( ц).
Если известно, что заданный для БПЛА объект неподвижен, то измеренные координаты Х ц, Z ц сравниваются с координатами полетного задания и при их отличии в БЭВМ 6 заменяются текущие программные координаты Х и Z на соответствующие им измеренные значения:
X t = D ц cos( ц);
Z t = D ц sin( ц).
Сеансы обзора и измерения координат заданного объекта могут повторяться вплоть до малой дистанции, где наступает ослепление радиолокационного координатора. Если заданный для приведения БПЛА объект подвижен (например, терпящее бедствие дрейфующее судно), то используются для управления летательным аппаратом законы самонаведения, приведенные, например, в . В режиме приведения БПЛА в назначенную точку поверхности Земли его полет осуществляется по программе автопилота и, соответственно, с его ошибками, которые имеют две основные составляющие: собственные ошибки автопилота за счет естественного "ухода" гироскопов и ошибка привязки местоположения заданного объекта и места старта БПЛА, которые составляют сотни метров при дистанции полета в несколько десятков километров. Предлагаемая система управления позволяет компенсировать все указанные составляющие ошибок приведения БПЛА. Это достигается следующим образом. Берется участок топографической карты места, где расположен заданный объект и ориентируется относительно направления полета БПЛА (например, ось Х снизу вверх, а ось Z слева направо). Размер этого участка определяется соотношениями:
X э = X ап +X зи +D;
Z э = Z ап +Z эи +(Dк-D 1),
где Х э, Z э - размеры участка карты по продольной Х и поперечной Z осям;
Х ап, Z aп - максимальные погрешности приведения БПЛА в заданную точку без участия координатора;
Х зи, Z эи - размеры зоны предполагаемых измерений интенсивности радиолокационных отражений;
D - размер элемента разрешения бортового локатора по дистанции;
D 1 - предполагаемая дистанция включения локатора;
Dк - предполагаемая дистанция от точки старта до конечной точки приведения БПЛА;
- угловой размер диаграммы направленности антенны в горизонтальной плоскости. Этот участок топографической карты преобразуется в пульте 9 подготовки и управления в радиолокационную карту для параметров бортового локатора (,D, Dк - D 1 и Н - высоты полета). На топографической карте выделяются зоны, участки или отдельные объекты с известными геометрическими характеристиками (рельеф, геометрические размеры характерных элементов, например, зданий, "скачки" по дистанции, вызванные рельефом и затенением более дальних участков ближними объектами) и отражательной способностью, сказывающейся на интенсивности отраженного сигнала. Геометрические характеристики местности являются наиболее простыми, хорошо изученными и достаточно широко используемыми, особенно в районах с сильно изрезанным рельефом . Топографическая карта в районе, где возможно нахождение искомого объекта, разбивается равномерной сеткой на элементы с линейными размерами, равными или меньшими, чем линейная разрешающая способность D. Если элемент карты имеет однородную поверхность, ее коэффициент отражения определяется соответствующим значением из таблицы или графиков . При неоднородной поверхности в одном элементе ее отражательная способность S отр находится как суммарное по площади S значение.
где n - число поверхностей с площадью S i , с постоянным коэффициентом отражения k i . Отсутствие сведений о коэффициенте отражения существенных зон или объектов в элементе разрешения приводит к необходимости исключения их активного участия в процессе идентификации и присвоения им индекса "отсутствие эталона". Методика преобразования топографической карты в карту интенсивности отражений приведена в . Реальная интенсивность отражений изменяется в широких пределах (в диапазоне 80-100 дБ), поэтому радиолокационная карта обычно реализуется двумерным массивом Х э Z э восьмиразрядных чисел bi,j. В предлагаемой системе радиолокационная карта преобразовывается в бинарный массив b(m,n) той же размерности путем пороговой обработки каждого элемента. Если bi,j>U пop , то на выходе устройства бинарной обработки b i,j =1, в противном случае b i,j принимаются равными нулю. Естественно, что массив бинарной карты будет существенно изменяться при изменении величины порога U пop . Пороговое значение интенсивности отражений выбирается таким, чтобы обеспечить после пороговой обработки бинарную карту с отношением чисел нулей и единиц, близким к единице. Как показывают результаты моделирования, такая карта дает наибольший запас достоверности правильной привязки измеренного массива к эталонной радиолокационной и, соответственно, к топографической карте местности. Значение этого порога определяется при помощи итеративной процедуры подсчета числа единиц в бинарном массиве, сравнения его с половиной суммарного числа элементов в эталонной радиолокационной карте и последовательного изменения значения U пop в сторону увеличения, если число единиц превышает половину массива, и в сторону уменьшения, если число единиц меньше половины массива. Ввиду того, что величина оптимального порога U пop формирования бинарной карты во многих случаях не совпадает со средним значением интенсивности радиолокационной карты, производится дополнительное определение отношения k п величины порога Unop к среднему значению интенсивности отражений по радиолокационной карте b с, т.е. k п =U пop /b с. Итак, кроме указанных ранее параметров траектории полета, в бортовую ЦВМ 6 с пульта управления 9 передаются вместе с массивом b(m,n) (например, размерностью 50x50) бинарных значений эталонной радиолокационной карты значение коэффициента kn, признак режима работы (приведение БПЛА к нерадиоконтрастному объекту) и значение дистанции Dк-D1, для которой определена эталонная бинарная карта. В режиме приведения БПЛА к нерадиоконтрастному объекту (Реж=2) система управления БПЛА функционирует следующим образом. После старта БПЛА на дистанции Dк-D2 до предполагаемого места нахождения заданного объекта-цели включается радиолокационный координатор в режиме обзора в секторе горизонтальной плоскости
= (Dк-D2)/Zэ,
а по дистанции D - в диапазоне (Dк-D2)Х э /2
и по сигналу АРУ приемника определяется ас - средний уровень интенсивности отраженных сигналов. По сигналу признака режима на управляющем входе двухпозиционного реле 44 блока 17 формирования порога размыкаются его нормально-замкнутые контакты, коммутирующие на вход усилителя 45 первую сигнальную цепь (сигнала а ш) и замыкается вторая сигнальная цепь по сигналу а с. По величине усредненного уровня интенсивности принимаемых сигналов а с определяется величина U пop 2 уровня срабатывания порогового устройства 11, которая зависит также и от значения величины управляющего сигнала на входе задания масштаба трехпозиционного поляризованного реле 46, поступающего с седьмого выхода БЭВМ 6:
U пор 2 = a c kп. Дистанция D2 выбирается меньшей, чем D1, на величину перемещения БПЛА за время одного - двух циклов обзора, необходимое для установления сигнала на выходе АРУ, т.е. на величину 3TV, где T - постоянная времени АРУ (0,5 - 1 с), а V - скорость продольного перемещения БПЛА. На дистанции Dк - D1 до предлагаемого места заданного объекта в пороговом устройстве 11 устанавливается порог U пор 2, и на очередном цикле обзора формируется бинарный массив измерений отраженных от поверхности сигналов Uи (,D), размерность которого соответствует размерности зондирующего сигнала и числу ячеек регистров фильтра 10 сжатия. При этом число ячеек фильтра сжатия может в два раза превышать число квантов в зондирующем фазоманипулированном сигнале для компенсации квадратурной составляющей сигнала. В рассматриваемом примере это - число 400, т.е. для двадцати значений углового положения антенны с дискретностью
= D/(Dк-D1),
где D - разрешающая способность радиолокационного координатора по дистанции, - угловое перемещение антенны по азимуту за один период следования зондирующих импульсов и измерения двадцати значений интенсивности сигнала по дистанции с дискретностью D. Устройство 12 фиксации координат формирует для БЭВМ 6 массив А (i, j) измерений, присваивая каждому элементу соответствующее значение угла i поворота антенны и дистанции D j, аналогично тому, как это делается в первом режиме работы по контрастному объекту. В БЭВМ 6 координаты i и D j массива А(i, j) преобразуются в номера линейных координат по осям X и Z. i-м номерам присваивается i-й номер по оси Z, а j-м номерам D присваивается j-й номер по оси X. В рассматриваемом примере это номера с первого по 20. При этом указанная операция не требует практичности никаких дополнительных программных или аппаратных затрат в БЭВМ 6. Ограничением является только соотношение (Dк-D1)/(20D), которое должно быть более 10, тогда указанные замены координат допустимы. После получения бинарного массива измерений А(i, j) БЭВМ 6 выдает со своего второго выхода команду на управляющие входы переключателей 13 и 14, изменяя тем самым положение коммутируемых ими контактов и соединяя регистры 41, 42 фильтра 10 сжатия сигналов с третьим и четвертым выходами БЭВМ 6. Сразу после этого (с задержкой, достаточной для срабатывания переключателей 13, 14) с третьего выхода БЭВМ 6 на запоминающий регистр 41 фильтра сжатия (вместо кода модуляции зондирующего сигнала) поступает через переключатель 13 последовательность бинарного массива измерений A(i,j), а на сдвиговый регистр 42 (вместо видеосигнала с выхода приемника) поступает с четвертого выхода БЭВМ 6 последовательность эталонного массива B(i,j) той же размерности, сформированного из эталонного массива b(m,n) путем последовательного перебора и вырезания матрицы размера массива измерений (20x20) из матрицы эталонного массива (в нашем примере ее размер 50x50). Алгоритм формирования массива B(i,j) представлен в конце описания. Таким образом, на сдвиговом регистре 42 фильтра сжатия последовательно появляются упорядоченные (аналогично измеренному массиву) бинарные последовательности фрагментов эталонной карты, которые сравниваются с измеренным массивом, находящимся на запоминающем регистре 41. Результаты суммирования совпадений значений сигналов на регистрах 41 и 42 с выхода фильтра 10 сжатия через нормально разомкнутые управляющим сигналом с шестого выхода БЭВМ 6 контакты переключателя 15 подаются на устройство 16 фиксации максимума сигнала. Число циклов обновления массива B(i,j) равно произведению (M-I)-(N-J). Устройство 16 фиксации максимума фиксирует величину выходного сигнала U 3 фильтра 10 сжатия сигналов на каждом шаге, запоминая его величину, если она превысила запомненную ранее величину этого сигнала, т.е. реализует алгоритм:
если текущее значение U 3 >U запомненного, то U запомненное = U 3 , одновременно посылая зафиксированный сигнал Uф на третий вход БЭВМ 6, где запоминается номер такта, на котором это произошло относительно начала прогона эталонного массива, и присваивается ему номер n ф. Таким образом, устройство 16 фиксации максимума запоминает одно максимальное значение сигнала на выходе фильтра 10 из всей выборки (M-I)((N-J), а БЭВМ 6 фиксирует номер последнего такта n ф, на котором был зафиксирован этот максимум. После окончания "прогонки" эталонного массива через фильтр 10 сжатия в БЭВМ 6 число n ф однозначно определяет расположение измеренного массива на эталонной карте. Смещение ближнего левого элемента участка поверхности, где измеряется отраженный сигнал, относительно левой нижней точки эталонной карты в элементах разрешения i см и j см определяются следующими соотношениями:
i см =F(n ф /(М-I));
j см =Е(n ф /(M-I)), (2)
где F () - функция целого числа аргумента, Е () - функция целого числа аргумента. Ошибка Хош приведения БПЛА в заданную точку на дистанции измерения D1 в продольной плоскости составляет величину
Х ош =(i cм +(M-I)/2)x, (3)
а в поперечной плоскости
Z ош =(j см +(N-J)/2)z, (4)
где x, z - величина элемента разрешения в продольной и боковой плоскости, м. В приведенных далее примерах моделирования для численных оценок точности и достоверности определения координат летательного аппарата относительно наблюдаемого участка местности принималось разрешение в продольной и боковой плоскости одинаковым и равным разрешению по дистанции, х=z=D. С учетом найденных ошибок корректируются программные значения заданной траектории полета БПЛА, аналогично тому, как это делается в предыдущем режиме наведения на контрастную цель, т.е. текущие программные значения Х и Z суммируются с Хош и Zош с соответствующим знаком. Например, скорректированное направление ск на заданную точку приведения БПЛА определятся следующим соотношением:

а дистанция Dск до скорректированной конечной точки приведения БПЛА для сброса полезного груза:
Dск=Dк-Х ОШ. (6)
Такая коррекция программы автопилота позволяет скомпенсировать уходы гироскопов и неточности привязки места старта БПЛА к заданному объекту. Для дополнительного пояснения функционирования системы управления БПЛА на фиг.8 приведена логико-временная последовательность этапов в режиме приведения к БПЛА к нерадиоконтрастному объекту. Этапы обозначены на фиг.8 позициями I,II,...,Х. I - вызов топографической карты местности из памяти ЭВМ (или ввод ее через устройство ввода графической информации, например, при помощи сканера) и преобразование ее в карту интенсивности радиолокационных отражений по методике, описанной выше. Этот этап работы может быть проведен заранее в лабораторных условиях или в обслуживающей организации более высокого уровня. II - определение положения и размеров участка Х э, Z э возможного обзора радиолокационным координатором из условий ухода гироскопических приборов и неточности "привязки" места старта БПЛА и конечной точки приведения. Ill - формирование бинарного массива эталонной карты b(m,n) размерностью 50x50 элементов (для примера, рассмотренного выше) и значения коэффициента kп. IV - трансляция из пульта 9 в блок 27 памяти БЭВМ 6 через ее первый вход:
- признака режима работы по нерадиоконтрастным объектам;
- массива b(m,n);
- коэффициента kп;
- программы автопилота (в простейшем случае направление плоскости стрельбы, высота полета и дальность полета к точке на дистанции D1 до требуемой точки приведения БПЛА, на которой бортовой радиолокационный координатор измеряет массив Ai,j интенсивности радиолокационных отражений). V - старт БПЛА и полет его до дистанции D2 до предполагаемого конечного места приведения. Здесь через первый выход БЭВМ 6 в автопилот 7 сообщаются программные траекторные параметры в координатах, привязанных к месту старта Хп, Zп и Yп. В простейшем случае программная траектория полета задается постоянными значениями направления полета в горизонтальной плоскости и высотой полета над поверхностью земли (или высотой полета относительно места старта). Автопилот 7 при помощи своих датчиков определяет истинное значение направления полета и высоту (с присущей им погрешностью), сравнивает их величины с программными значениями и управляет рулевыми органами БПЛА таким образом, чтобы свести это рассогласование к нулю. Таким образом обеспечивается движение БПЛА по программной траектории. Из автопилота 7 в БЭВМ 6 по второму входу поступают текущие координаты Xt и Zt перемещения БПЛА относительно точки старта. Если выбранная плоскость стрельбы совпадает с осью X, а отклонения от нее Zt невелики (в пределах расчетной погрешности), то дистанция Dt, пролетаемая БПЛА, принимается равной Xt. Скорость изменения Xt в этом случае соответствует скорости V продольного перемещения БПЛА. Скорость V может поступать в БЭВМ 6 из автопилота как самостоятельный параметр во второму входу, или дополнительно вычисляться в процессоре 26 как отношение приращения координаты Xt за известный интервал времени t. По вычисленному или измеренному значению скорости V полета БПЛА в процессоре 26 вычисляется величина дистанции D2=D1-3VT (где Т - постоянная времени АРУ приемника радиолокационного координатора) и сравнивается с текущей дистанцией Dt. VI - при достижении Dt величины D2 включается радиолокационный координатор, путем подачи электропитания на его электронные блоки (система подачи электропитания на фиг.1 не указана). За время полета от D2 до D1 координатор осматривает в горизонтальной плоскости сектор от нулевого положения антенны, совпадающего с плоскостью стрельбы, дo крайнего левого положения сектора измерений л. При этом, например, л = m/2. За это время определяется средняя величина интенсивности отражений (сигнал ac на третьем выходе приемника 3). На дистанции D1 (выполняется условие Dt=Dl) на пятом выходе БЭВМ 6 появляется сигнал +U признака режима (постоянное напряжение, сигнализирующее о переключении режима обнаружения сигнала на режим формирования массива измерений), по которому переключаются порог обнаружения (с величины U пop на величину U пop 2) в пороговом устройстве 11 при помощи блока 17 формирования порога. Значение коэффициента kп транслируется через седьмой выход БЭВМ 6 в аналоговом виде на четвертый вход блока 17 формирования порога, где в зависимости от его знака уменьшается или увеличивается сопротивление в цепи обратной связи усилителя 45, определяющего в дальнейшем порог бинарной обработки измеренного массива. VII - на дистанции D1 проводятся измерение отраженного сигнала на видеовыходе приемника 3 в I квантах дистанции и в J угловых положений антенны (в рассмотренном примере I=J=20) и присваиваются им значения 0 или 1 (при превышении уровня сигнала величины U пop 2 в пороговом устройстве 11). При помощи устройства 12 происходит фиксация значений j-го угла поворота антенны и значений i-й задержки З, соответствующей дальности Di элемента отражений ai, j. Значения Di и i подаются на 4-й и 5-й входы БЭВМ 6 и накапливаются в ее блоке 27 памяти. После одного цикла сканирования в памяти ЭВМ оказывается сформированным бинарный двумерный массив Ai,j. VIII - после окончания формирования массива Ai,j, что определяется счетом числа зондирующих импульсов радиолокационного координатора, поступающих на 6-й вход БЭВМ 6, на втором выходе БЭВМ 6 появляется команда в виде постоянного потенциала, которая поступает на управляющие входы переключателей 13 и 14. По этой команде переключатель 13 подключает запоминающий регистр 41 фильтра 10 сжатия, соединенный ранее с передатчиком 2 радиолокационного координатора, к третьему выходу БЭВМ 6, а переключатель 14 подключает сдвиговый регистр 42 фильтра 10 сжатия, соединенный ранее с первым выходом приемника 3 радиолокационного координатора, с четвертым выходом БЭВМ 6. Из двумерного массива Ai,j на четвертом выходе БЭВМ 6 формируется одномерная последовательность путем последовательного считывания из Ai,j массива i-х столбцов. Эта последовательность (IJ) с третьего выхода БЭВМ 6 подается через нормально-разомкнутые контакты переключателя 13 на запоминающий регистр 41 фильтра сжатия 10 и запоминается в нем. Из эталонного массива b(m, n), находящегося в блоке 27 памяти БЭВМ 6, процессором 26 формируется выборка В (i,j) по алгоритму (1) и в виде одномерной последовательности (IJ) через четвертый выход БЭВМ 6 и переключатель 14 поступает на сдвиговый регистр 42 фильтра сжатия 10. В соответствии с алгоритмом (1), последовательность b(m,n) обновляется (M-I)(N-J) раз. После формирования каждой новой последовательности b(m,n) на шестом выходе БЭВМ 6 формируется импульсный сигнал, поступающий на управляющий вход переключателя 15, через который транслируется выходной сигнал фильтра 10 сжатия на устройство 16 фиксации максимума этого сигнала за весь период обработки. IX - Зафиксированный номер Uф сеанса сравнения, при котором сигнал на выходе фильтра сжатия наибольший, определяет необходимые поправки к программным значениям Хц и Zц (формулы (2)-(5)) для коррекции дальнейшего полета БПЛА. X - При достижении скорректированного местонахождения заданной точки приведения БПЛА система управления выдает команду на исполнительные механизмы сброса полезного груза. На фиг.9 показана укрупненная схема алгоритма функционирования БЭВМ 6 и пульта 9 для приведения БПЛА в нерадиоконтрастную точку поверхности земли. Оценка качества приведения БПЛА в заданную точку может быть произведена по двум координатам раздельно в единицах элементов разрешения i и j или в метрах, соответственно, xi и zj. При этом по обеим координатам Х и Z принимается максимальное разрешение, т.е. х=z=D. Суммарная ошибка в единицах элементов разрешения:

или в метрах:

Так как ошибка определения местоположения БПЛА является случайной величиной, зависящей от большого числа зависимых и независимых друг от друга случайных факторов, то целесообразно оценивать среднюю и максимальную ошибку привязки. Возможна также вероятностная оценка нахождения ошибки в заданных пределах. Указанные оценки, достаточные для характеристики обычных измеряемых параметров, не дают полного представления о качестве ориентации при наличии локальных экстремумов признака идентификации, соизмеримых с глобальным экстремумом. В этом случае необходимо ввести дополнительно показатель Сп - запас по точности или достоверности определения глобального экстремума признака идентификации в %, определяемый следующим соотношением:
Сп=100*(Пр 1 -Пр 0)/Пр,
где Пр - среднее значение критерия на всем анализируемом участке эталонной карты;
Пр о - значение критерия в окрестности искомой точки, соответствующей глобальному экстремуму; Пp 1 - значение признака идентификации в точке локального минимума, ближайшего по величине к значению Пр 0 . Если локальный экстремум в силу ошибок измерителя или эталона определен глобальным (это возможно при малых значениях запаса Сп и существенных ошибках измерителя), то оценивать ошибку определения местоположения БПЛА по указанному критерию не имеет смысла. Статистическая оценка ее при сопоставлении с влиянием других типов погрешностей не корректна (на порядок и более превышает влияние других факторов). В этом случае необходимо оценивать вероятность неправильного определения глобального экстремума как отношение числа ложных определений экстремума к общему числу статистических испытаний. Приведенные критерии оценки качества привязки БПЛА к местности определены методом статистического моделирования для конкретных участков эталонной карты и параметров бортового локатора. Примеры изменения указанных критериев для группы промышленных зданий приведены на фиг.10, а для участка местности с кустарником, лугом, дорогами разного класса и водоемами приведены на фиг. 11. При этом заданные точки приведения БПЛА (11 точек, номера которых обозначены на горизонтальной оси графиков фиг.10 и фиг.11) выбирались по узлам равномерной сетки с шагом 200 м. По оси ординат обозначен масштаб ошибки приведения в метрах (справа) и масштаб запаса достоверности С в процентах. Приведенные значения ошибок и запасов достоверности получены при следующих условиях статистического моделирования:
- незнание средних значений отражательных способностей в пределах 10 дБ,
- флуктуации отражений по интенсивности в пределах 20 дБ,
- пространственные флуктуации отражений в пределах 30 м,
- ошибка в коэффициенте затухания излучения в атмосфере 10 дБ,
- динамический диапазон приемника 60 дБ,
- зона измерений радиолокационных отражений 300300 м,
- зоны ошибок приведения автопилотом БПЛА в заданную точку включения бортового координатора в продольной и поперечной плоскостях 450 м. Закон распределения всех ошибок в указанных диапазонах при моделировании принимался равномерным. На основании результатов моделирования можно утверждать, что ошибки приведения БПЛА к заданному объекту и точке земной поверхности уменьшились на порядок. Без использования предложенных доработок система обеспечивала максимальную ошибку 450 м. С доработками - 40 м. Как видно из приведенных графиков, не все участки рассмотренных сюжетов местности являются одинаково пригодными для точного приведения БПЛА. На 9-м участке первого сюжета и 5-м участке второго ошибки приведения велики и малы запасы достоверности. При необходимости приведения БПЛА к этим участкам целесообразно задавать для обзора бортовому локатору соседние участки (10-й для первого сюжета и 6-й для второго). В этом случае в вычисленную величину смещения БПЛА (Хош, Zош) необходимо добавить разницу координат заданной точки, например, точки 5 (Х5, Z5) второго сюжета и точки 6 (Х6, Z6) первого сюжета. В остальном функционирование системы аналогично описанному ранее. Таким образом приведенные результаты подтверждают возможность использования предлагаемой системы управления БПЛА для его высокоточного приведения как к радиоконтрастным, так и к нерадиоконтрастным объектам назначения. Пользуясь приведенным описанием и чертежами, предлагаемую систему можно изготовить, используя известную элементную базу и известную технологию, что определяет промышленную применимость предлагаемого изобретения. Список литературы
1. Патент РФ 2062503, МПК G 05 D 1/04, В 64 С 19/00, публикация 20.06.96 г. 2. Максимов М.В., Горгонов Г.И. Радиолокационные системы самонаведения. М.: Радио и связь, 1992 г. 3. Белоглазов И.Н., Тарасенко В.П. Корреляционно-экстремальные системы. М.: Сов.радио, 1974. 4. Белецкий В.К., Юрьев А.Н. Корреляционно-экстремальные методы навигации. М.: Радио и связь, 1982. 5. Левин В.Л. Обработка информации в оптических системах пеленгации. М.: Машиностроение, 1978. 6. Кузовский С. Ф. Корреляционно-экстремальные системы. К.: Наукова думка, 1973. 7. Шаров С. И. Основы проектирования координаторов систем управления движущимися объектами. Гособразование СССР, 1990 г., прототип. 8. Патент РФ 2114444, МПК G 01 S 13/44, публикация 27.06.98 г. 9. Патент РФ 2124221, МПК G 01 S 13/42, публикация 27.12.98 г. 10. Патент РФ 2083995, МПК G 01 S 13/42, публикация 10.07.97 г. 11. Преснухин Л. Н. , Шахнов В.А., Кустов В.А. Основы конструирования микроэлектронных вычислительных машин (уч. пособие). М.: Высшая школа, 1976. 12. Смолов В.Б., Барашенков В.В., Байков В.Д. и др. Специализированные ЦВМ (учебник). М.: Высшая школа, 1981. 13. Боднер В.А. Системы управления летательными аппаратами (учебник). М. : Машиностроение, 1973. 14. Андреев В.Д. Теория инерциальной навигации. Автономные системы. М.: Наука, 1966. 15. Инерциальная навигация / под ред. К.Ф. О"Доннела. М.: Наука, 1969. 16. Липтон А. Выставка инерциальных систем на подвижном основании. М.: Наука, 1971. 17. Репников А.В., Сачков Г.П., Черноморский А.И. Гироскопические системы (уч. пособие). М.: Машиностроение, 1983. 18. Патент РФ 2163392, МПК G 06 F 15/16, публикация 20.02.2001 г. 19. Степанов Ю.Г. Противорадиолокационная маскировка, М.: Советское радио, 1968 г. 20. Шаров С.Н. Некоторые возможности лазерного локатора для ориентации движущегося объекта на местности. Труды БГТУ, Вопросы повышения качества управления движением, вып.1, 1995.

Формула изобретения

Система управления беспилотным летательным аппаратом, включающая автопилот, вход и выход которого соединены соответственно с первым выходом и вторым входом бортовой электронно-вычислительной машины (БЭВМ), первый вход которой является входом для подключения к пульту предстартовой подготовки и ввода полетного задания, и радиолокационный координатор с фазоманипулированным зондирующим сигналом, который содержит антенну, соединенную сигнальными входом и выходом с передатчиком и приемником и кинематически связанную с приводом антенны, синхронизатор, дальномер и устройство обработки сигналов, в состав которого входят фильтр сжатия сигналов, пороговое устройство и устройство фиксации координат, входы которого с первого по третий подключены соответственно к выходу порогового устройства, выходу дальномера и информационному выходу привода антенны, а выходы, на которых формируются значения величин дистанции и углового положения отраженных сигналов, подключены к четвертому и пятому входам БЭВМ, шестой вход которой и вход передатчика подключены к первому выходу синхронизатора, передающему импульсную последовательность с частотой зондирования, второй выход которого, передающий последовательность импульсов синхронизации, подключен ко второму входу дальномера, первый вход которого и вход приемника по сигналу окончания зондирующего импульса подключены ко второму выходу передатчика, гетеродинный выход которого соединен с гетеродинным входом приемника, отличающаяся тем, что в устройство обработки сигналов дополнительно введены три переключателя, устройство фиксации максимума и блок формирования порога, управляющие входы которого по сигналу признака режима и сигналу задания масштаба подключены соответственно к пятому и седьмому выходам БЭВМ, выход подключен к уровневому входу порогового устройства, а соответствующие сигнальные входы - к выходам приемника, на которых формируются усредненное значение интенсивности шума и усредненное значение интенсивности отраженных сигналов, кодовый выход передатчика и выход видеосигнала приемника подключены к первым сигнальным входам соответственно первого и второго переключателей, управляющие входы которых соединены со вторым выходом БЭВМ, а вторые сигнальные входы подключены соответственно к третьему и четвертому выходам БЭВМ, с которых передаются последовательность бинарного массива измерений и последовательность эталонного бинарного массива, первый и второй входы фильтра сжатия сигналов подключены к выходам соответственно первого и второго переключателей, а его выход соединен с сигнальным входом третьего переключателя, управляющий вход которого подключен к шестому выходу БЭВМ, а соответствующие выходы - к сигнальному входу порогового устройства и сигнальному входу устройства фиксации максимума, выход которого, передающий сигнал, характеризующий местоположение бинарного массива измерений на эталонной карте, соединен с третьим входом БЭВМ.

Предлагаемая группа изобретений относится к военной технике, в частности к системам управляемого оружия и ракетной, артиллерийской технике с головками самонаведения. Технический результат - повышение вероятности поражения целей за счет обеспечения требуемого угла подхода ракеты к плоскости горизонта в районе цели к моменту захвата излучения от цели. Это обеспечивается тем, что в известном способе вывода ракеты в зону захвата цели головкой самонаведения, включающем запуск ракеты по баллистической траектории на заданную высоту, вычисление угловых координат линии ракета - цель, в соответствии с которыми до момента захвата излучения от цели формируют команды управления UY, UZ в вертикальном и горизонтальном каналах управления, пропорциональные угловым скоростям линии ракета - цель, новым является то, что одновременно с вычислением угловых координат линии ракета - цель определяют разность между вычисленной угловой координатой λY в вертикальной плоскости и требуемым углом λТР подхода к плоскости горизонта на участке захвата цели головкой самонаведения и к сформированной команде управления в вертикальном канале UY добавляют команду, пропорциональную разности углов: (λY-λТР)⋅Kλ, где Kλ - коэффициент пропорциональности, определяемый из условия обеспечения устойчивости процесса регулирования углового положения линии ракета - цель. Предложенное устройство включает последовательно соединенные вычислительный блок, первый блок вычитания, первый усилитель, последовательно соединенные второй блок вычитания, второй усилитель, интегратор, выход которого соединен со вторым входом первого блока вычитания, а выход первого усилителя соединен с первым входом второго блока вычитания, со вторым входом которого соединен выход запоминающего элемента. В указанное устройство дополнительно введены последовательно соединенные блок хранения констант, коммутатор, третий блок вычитания, третий усилитель, сумматор, второй вход которого соединен с выходом первого усилителя, а второй вход третьего блока вычитания соединен с выходом вычислительного блока. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области авиационного приборостроения и может быть использовано для повышения точности решения задач навигации. Для реализации данного изобретения в автономно-корректируемую ИНС введены дополнительно блок вычисления частной производной приращения высоты рельефа от путевой скорости, третий блок сравнения и блок вычисления частной производной от приращения от высоты рельефа подстилающей поверхности, а в блок мультимодального сравнения введены дополнительные субблоки вычисления ковариационной матрицы и субблоки сравнения. Технический результат - устранение погрешностей за счет дополнительного измерения приращений высоты рельефа в зависимости от путевой скорости летательного аппарата и дальнейшего совместного оценивания погрешностей измерения координат и путевой скорости. 1 ил.

Координатор головки самонаведения содержит сферический обтекатель, карданов подвес, двигатели наведения и стабилизации, датчики угла, датчики угловой скорости. На внутренней раме подвеса установлено первое плоское зеркало. Точка пересечения оси вращения внутренней рамы и оси вращения внешней рамы подвеса совпадает с центром кривизны поверхностей сферического обтекателя. На неподвижной части координатора установлено второе плоское зеркало, связанное с фоточувствительными элементами. Технический результат заключается в увеличении угла обзора в передней полусфере ГСН, повышении точности определения координат объекта, уменьшении нагрузки на приводы подвеса и, как следствие, возможности получения более высоких динамических характеристик системы стабилизации оптической оси. 2 ил.

Изобретение относится к системам автоматического управления

Изобретение относится к области управления беспилотными летательными аппаратами в чрезвычайных ситуациях

И. В. Макаров, В. И. Кокорин (научный руководитель)

ООО НПП «Автономные аэрокосмические системы – ГеоСервис»

Институт инженерной физики и радиоэлектроники ФГАОУ ВПО «Сибирский федеральный университет», г. Красноярск

Работа отражает один из подходов к созданию программно-аппаратного комплекса управления беспилотными летательными аппаратами, как совокупности бортового и наземного сегментов. Для управления бортовым сегментом разработан блок автопилота. Контроль наземного сегмента комплекса выполняет управляющая электронная вычислительная машина, функционирующая по унифицированному программному обеспечению с блоком автопилота. Предложенный подход позволяет минимизировать затраты по проектированию системы и разработке программного обеспечения при обеспечении масштабируемости системы.

При проектировании систем гражданского назначения ключевым является соотношение функциональности, надёжности и цены. Обеспечение функциональности на начальных этапах жизненного цикла комплексов беспилотных летательных аппаратов (БПЛА) осложняется слабым развитием методик их применения в хозяйственной деятельности предприятий-потребителей. Это связано с тем, что направление гражданских БПЛА в России находится на начальном этапе своего развития. Возможно, поэтому активное применение БПЛА в настоящее время сводится к методически простым задачам визуального наблюдения и аэрофотосъёмки.

Для построения комплексов БПЛА для широкого круга задач: аэроэлектроразведка, аэромагнитометрия, аэрофотосъёмка, газоанализация, патрулирование и т.д. требуется сформировать комплекс аппаратных и программных средств, позволяющих на уровне комплектации и настройки интегрировать систему с различными полезными нагрузками на базе планеров БПЛА различных массогабаритных характеристик.

Комплекс управления БПЛА по назначению разделяется на два сегмента: бортовой комплекс управления (БКУ) и наземный комплекс управления (НКУ).

Задачами БКУ является:

  • Решения задачи навигации и автоматического управления летательным аппаратом (ЛА);
  • Обеспечения командно-телеметрического взаимодействия с НКУ;
  • Обеспечение функционирования полезной нагрузки;
  • Обеспечение самодиагностики ЛА.

Основными задачами НКУ является:

  • Обеспечение командно-телеметрического взаимодействия с БКУ;
  • Обеспечение ручного управления в реальном времени;
  • Предоставление элементов программирования и управления БПЛА;
  • Представление телеметрической информации в графическом виде;
  • Отражение результатов функционирования полезной нагрузки.

По перечисленным основным задачам НКУ одним из очевидных и дешёвых решений является система рабочего места оператора на базе портативной персональной электронной вычислительно машины (ППЭВМ), подключённой к приёмо-передающей аппаратуре командно-телеметрического канала. Графическое управляющее программное обеспечение (ПО) осуществляет программирование маршрута и отображение параметров полёта. При этом остаётся нерешённой задача обеспечения ручного управления БПЛА. Задачи поддержания управляющего графического интерфейса и управления в реальном времени (передача управляющих сигналов по штатному радиоканалу) на одной ЭВМ являются несовместимыми. Это связано с требованием обеспечения надёжности и детерменированности времени прохождения сигналов ручного управления. Кроме этого централизация НКУ на базе графической системы требует дополнительных технических средств для обеспечения её автономности в течение длительного времени.

Предлагается в качестве центрального элемента НКУ использовать встраиваемую управляющую электронную вычислительную машину (УЭВМ) под управлением операционной системы реального времени (рис. 1). В то время как обеспечение рабочего места оператора с задачами отображения параметров полёта и программирования маршрута остаются под управлением ППЭВМ, но уже подчинённого системно УЭВМ НКУ. Задача доступа к управлению БПЛА и получения его телеметрии на ПЭВМ реализуется клиент-серверным взаимодействием через Socket интерфейс по каналам Ethernet. Таким образом, рабочее место оператора является графическим управляющим терминалом к УЭВМ НКУ. В данном случае не требуется обеспечение автономности рабочего места оператора в течение длительного времени.

При предложенной схеме организации НКУ система обеспечивает решение задач ручного управления в реальном времени с разделением приоритетов доступа к вычислительным ресурсам и к радиоканалу. Это гарантирует доставку пакетов ручного управления с минимальной задержкой вне зависимости от загрузки радиоканала и процессора УЭВМ.

Рисунок 1. Структурная схема наземного комплекса управления

Кроме обеспечения независимого канала ручного управления, централизация на базе УЭВМ НКУ позволяет интегрировать в состав НКУ дополнительные системы в зависимости от решаемых задач. Например, для решения задачи высокоточного пилотирования и автоматической посадки в НКУ интегрируется аппаратура формирования дифференциальных поправок (ДП) к сигналам спутниковых навигационных систем (СНС), в данном случае УЭВМ НКУ выполняет доставку на БКУ информацию ДП по выставленным приоритетам.

Для обеспечения автономности НКУ от рабочего места оператора в систему НКУ включается пульт индикации и выбора режимов, который с минимальным энергопотреблением отражает ключевые параметры жизнеобеспечения БПЛА, а так же ретранслирует основные команды выполнения задания (например «взлёт», «возврат», «посадка», «прекратить задание»). Данное решение сводит задачи рабочего места оператора к программированию маршрута, настройкам БПЛА, расширенному исследованию полётных параметров. Это позволяет не только увеличить продолжительность автономного функционирования НКУ, но и сократить затраты на заимствуемое оборудование. Например, отсутствует необходимость приобретения ПЭВМ для работы в зимних условиях на регулярной аэрофотосъёмке, где маршрут может быть запрограммирован на ПЭВМ в помещении, а обслуживающему персоналу БПЛА достаточно обеспечить взлёт и контроль полёта.

Клиент – серверная модель взаимодействия рабочего места оператора с УЭВМ НКУ позволяет строить систему с распределёнными рабочими местами оператора, имеющие доступ к НКУ через любую локальную вычислительную сеть (ЛВС) и интернет. В составе сервера настраиваются права доступа к комплексу для каждого пользователя. Таким образом, в системе предусмотрен режим удалённого информационного обеспечения потребителя или диспетчерских служб о параметрах функционирования БПЛА, его местоположении. Эта возможность обеспечивает потребителю в реальном времени удалённый доступ к результатам работы комплекса. Для диспетчерских служб эта функция позволяет контролировать полёты комплексов БПЛА.

Система БКУ строится на базе блока автопилота, объединяющего в своём составе следующие системы:

  • Вычислитель;
  • Микромеханическая инерциальная навигационная система;
  • Спутниковая навигационная система;
  • Абсолютный и дифференциальный манометры.

Вычислитель имеет следующие характеристики и особенности:

Производительность 400MIPS;

  • Объём оперативной памяти 64Мб;
  • Объём энергонезависимой памяти от 256Мб;
  • Управление осуществляется операционной системой реального времени (ОСРВ) QNX Neutrino.

В составе блока автопилота находятся следующие интерфейсы:

  • 5 последовательных портов в зависимости от аппаратной конфигурации представляемые в виде: RS-232, RS-485 или RS-422;
  • 100Мбит Ethernet;
  • USB Host.

Программное обеспечения блока автопилота на базе существующих ОСРВ позволяет концентрировать усилия по разработке на решении ключевых задач блока. Операционная система QNX является мультиплатформенной, это обстоятельство позволяет сохранять масштабируемость блока автопилота не только по функциональности, но и производительности за счёт использования других архитектур процессора.

ОСРВ QNX Neutrino позволяет без ограничений выполнять НИОКР. Приобретение лицензии необходимо только на этапе коммерциализации.

Ethernet интерфейс необходим для интеграции с высокопроизводительными полезными нагрузками, такими как фотокамеры высокого разрешения. Кроме этого в составе БКУ автопилот может быть дублирован, канал перекрёстного резервирования образуется по Ethernet за счёт использования специализированного сетевого стека QNX – QNET.QNET позволяет получать доступ к ресурсам удалённой машины теми же программными механизмами, что и к локальным ресурсам. Под ресурсом понимается блочное, символьное или специализированное устройство, с точки зрения программиста – файл, зарегистрированный в дереве каталогов .Так как базовое программное обеспечение строится на основании администраторов ресурсов – фактически драйверов, основной блок автопилота может считывать информацию, например, по показаниям инерциальных датчиков с резервного блока. Таким же образом резервный блок может использовать приёмо-передающую аппаратуру, подключённому к основному блоку.

УЭВМ НКУ функционирует также, под управлением ОСРВ QNX Neutrino, это позволяет использовать для ряда задач унифицированное программное обеспечение, общее для НКУ и БКУ. Например: ПОкомандно-телеметрического обмена и драйверы устройств и подсистем.

Доступ к исполнительным устройствам (электроприводам, контроллерам полезной нагрузки) комплекса осуществляется по магистральным интерфейсам RS-485, RS-422 специализированным протоколом с адресацией устройств и контролем канальных ошибок.

На рисунке 2 представлена структура БКУ БПЛА взлётной массой до 4кг (тип «Дельта»), так как планер выполнен по аэродинамической схеме «бесхвостка», для управления аэродинамическими поверхностями используются два электропривода: по одному налевый и правый элевоны. Магистрали RS-485 разделены для электроприводов и вспомогательных систем: контроллера полезной нагрузки, системы автоматического спасения. Это сделано для специализации канала электроприводов, исключая дополнительные задержки прохождения управляющего сигнала в случае если канал занимается низкоприоритетным процессом. Система автоматического спасения контролирует выпуск парашюта для штатной посадки и является «сторожевым таймером» комплекса, осуществляя выброс парашюта, если нет сигнала сброса таймера от блока автопилота.


Рисунок 2. Структурная схема БКУ БПЛА DELTA

На рисунке 3 представлена блок-схема информационной структуры БПЛА максимальной взлётной массой 20-25 кг (тип «Гамма»). Электроприводы унифицированы для обоих типов БПЛА: «Дельта» и «Гамма». Аппарат «Гамма» выполнен по классической аэродинамической схеме и имеет 3 секции флаперонов на каждом крыле, так же имеются дублированные электроприводы для руля направления и высоты, функционирующие через дифференцирующий механизм. В данном случае подключение электроприводов осуществляется по двум независимым магистралям RS-485, для левой и правой стороны летательного аппарата. Это исключает необратимые последствия от замыканий в магистрали от механического повреждения или выгорания драйверов интерфейса. Функции по управлению выполняют в ограниченном режиме электроприводы противоположной стороны. При этом БПЛА «Гамма» так же может оборудоваться парашютной аппаратурой системы автоматического спасения. Как и для типа «Дельта» оборудование вспомогательных систем вынесено на отдельную магистраль.

Отсутствие необходимости выполнения гальванической развязки и использования специализированных контроллеров, например, мультиплексного канала обмена, позволяет интегрировать комплекс БПЛА более оптимальным по цене и массо-габаритным характеристикам.


Рисунок 3. Структурная схема БКУ БПЛА GAMMA

Унификация элементов комплекса управления беспилотными летательными аппаратами в области исполнительных устройств, программного обеспечения позволяет с минимальными затратами конфигурировать БКУ и НКУ в зависимости от решаемых задач.

СПИСОК ИСТОЧНИКОВ ИНФОРМАЦИИ

1. Макаров И.В. Создание блока автопилота малого беспилотного летательного аппарата. //Современные проблемы радиоэлектроники: сб.науч.тр. / науч.ред.: А.И.Громыко, А.В.Сарафанов; отв. за вып.: А.А.Левицкий. - Красноярск: ИПК СФУ, 2009. - 465 с. - Стр. 56–59

2. Writing a Resource Manager[Электронный ресурс]: тех.документация / QSSI-QNX Documentation Library.

Аннотация : в данной статье приведена ТРИЗ-эволюция систем управления беспилотными летательными аппаратами, начиная с первых и заканчивая современными, с их описанием, техническими противоречиями и возможным дальнейшим развитием.

Ключевые слова : система управления, беспилотный летательный аппарат, БПЛА.

Annotation: In this article we present TRIZ-evolution of control systems of unmanned aerial vehicles, that is starting with the original and ending with the modern, with their description, technical contradictions and possible further development.

Keywords: control system, unmanned aerial vehicle, UAV.

В настоящее время беспилотные летательные аппараты (БПЛА) достаточно сильно развиты и имеют широкий круг применений. За век своего существования БПЛА как увеличились в своих размера до десятков метров, так и уменьшились до нескольких миллиметров; их диапазон скорости, грузоподъёмности тоже существенно расширился.

Однако системы управления БПЛА неизменно развивались и продолжают развиваться. Рассмотрим эволюцию систем управления БПЛА, начиная от систем управления первых беспилотных «воздушных торпед» до систем управления современных беспилотников. Для современных БПЛА ограничимся мини и микро классами аппаратов (вес до 30 кг).

Как всегда бывает, первыми БПЛА разрабатывали военные, и только в XXI веке началось активное развитие БПЛА гражданского назначения.

1. Исторически первый БПЛА .

Исторически первым БПЛА считается «Жук» Кеттеринга (см. рис. 1). Это один из первых успешных проектов беспилотного летательного средства. По заказу армии США в 1917 году изобретатель Чарльз Кеттеринг разработал свою экспериментальную беспилотную «воздушную торпеду», которая стала предшественником крылатых ракет. Целью было создать дешёвый и простой беспилотный самолёт-снаряд для армейского авиационного корпуса.

Рисунок 1 – Жук Кеттеринга.

Аппарат получился достаточно компактный, в отличие от «крылатой бомбы» Сперри, разрабатываемой и испытываемой в тоже время. «Жук» имел цилиндрический корпус из дерева, к которому крепилась бипланная V-образная коробка.

Беспилотное средство было оснащено дешёвым четырёхцилиндровым двигателем и инерциальной автоматической системой управления. После старта, питающийся электричеством от двигателя, гироскоп обеспечивал стабилизацию «Жука» по направлению . Гироскоп был соединён с вакуум-пневматическим автопилотом (рис. 2), который осуществлял управление рулём направления. Блок-схема системы управления «Жука» представлена на рисунке 3.

Рисунок 2 – Вакуум-пневматический автопилот (пример)

Управление рулём высоты осуществлялось аналогичным образом, но датчиком в этом случае уже являлся барометрический альтиметр.

Перед стартом на беспилотном аппарате задавали значение высоты и максимальное количество оборотов пропеллера, что соответствовало пройденному расстоянию; раскручивали гироскоп. Запуск происходил с рельсовой катапульты, «Жук» выходил на заданную высоту и летел по прямой в сторону цели. Специальное устройство отсчитывало обороты пропеллера и по достижении нужного расстояния (количества оборотов пропеллера сравнялось с заданным), высвобождался пружинный механизм, который отключал двигатель и выбивал болты, держащие крылья. Корпус аппарата падал вниз и достигал цели.

Рисунок 3 – Блок-схема системы управления

«Жук» Кеттеринга предназначался для обстрела городов, крупных промышленных центров и мест сосредоточения войск противника на дистанции до 120 км. Он успешно прошёл испытания, в отличие от «воздушной торпеды» Сперри, и был прият на вооружение. Система показала себя лучше, успешней и дешевле предыдущих, но Первая мировая война закончилась, и заказ так и не был выполнен . Всего было изготовлено 45 машин.

У «Жука» Кеттеринга были реализованы простейшие функции автопилота: управление рулём высоты и рулём направления, отсчитывание пройдённого расстояния, отключение двигателя и сброс крыльев. Неудачи в испытаниях были связаны с проблемами удержания аппарата на курсе. Аппарат мог отклониться от курса как при запуске с рельсовой катапульты, так и во время полёта. Кроме того, «воздушная торпеда» под действием ветра могла завалиться на крыло и упасть. Примитивный автопилот хоть и пытался придерживаться курса, но с сильными порывами ветра или ошибкой при запуске справиться не мог.

Представим алгоритм управления «Жука» Кеттеринга:

1) Перед стартом задавались максимальная высота и число оборов пропеллера.

2) Происходил запуск с рельсовой катапульты.

3) Аппарат выходил на заданную высоту (контроль высоты осуществлялся с помощью барометрического альтиметра).

4) Автопилот поддерживал неизменный курс благодаря воздействию гироскопа (полёт представлял собой движение по прямой).

5) При достижении заданного числа оборотов (нужного расстояния), происходило отключение двигателя и сброс крыльев. Корпус аппарата падал вертикально вниз в цель.

Аппарат имел малую дальность и мог двигаться только по прямой из пункта «А» в пункт «Б». Маршрут с большим количеством точек был невыполнимой задачей, как и возвращение аппарата на место старта.

Выявим технические противоречия (ТП), имеющиеся в описываемой системе, для единообразия в формулировках противоречий все рассматриваемы системы будем называть БПЛА:

ТП1. При повышении степени стабилизации БПЛА по крену, путём введения стабилизирующих элементов на крыльях, недопустимо повышается вес аппарата.

ТП2. При повышении степени стабилизации БПЛА по крену, путём введения стабилизирующих элементов на крыльях, недопустимо повышается сложность конструкции.

ТП3. При повышении степени стабилизации по курсу недопустимо уменьшается расстояние до цели.

ТП4. При повышении сложности маршрута недопустимо повышается сложность конструкции.

Противоречие ТП4 было разрешено использованием приёмов вынесения, непрерывности полезного действия, «посредника», путём замены инерциального автопилота на систему радиоуправления. Этап ТРИЗ-эволюции представлен на рисунке 4.

Рисунок 4 – Первый этап эволюции.

2. Новая веха : появление радиоуправляемых летательных аппаратов .

В 1930-х годах армия США получила предложения поставлять радиоуправляемые беспилотные самолёты для различных нужд. Среди компаний, сделавших предложение, была Radioplane Company. Основана она Дени Реджинальдом, бывшим пилотом британской королевской авиации, который эмигрировал в США и стал актёром, а позже основал магазин и компанию по производству радио моделей самолётов .

Radioplane Company предложила армии США линейку радиоуправляемых моделей самолётов, среди которых присутствовала модель Radioplane OQ-2 (рис. 5). Это первый дистанционно-пилотируемый летательный аппарат (ДПЛА), поступивший в массовое производство. В общем было произведено 15000 моделей. Эксплуатация проводилась вплоть до 1948 года .

Radioplane OQ-2 представлял собой самолёт-мишень для обучения зенитных расчётов. Длина – 2,65 м. Размах – 3,73 м. Взлётный вес – 47 кг. Максимальная скорость – 137 км/ч. Максимальное время полёта – 1 час.

Рисунок 5 – Внешний вид Radioplane OQ-2

Запуск происходил с катапульты, а управлялась беспилотная радио модель оператором с земли, который мог имитировать различный ситуации (например, заход истребителя для атаки). Если аппарат оставался цел после полёта, посадка происходила с помощью выбрасываемого парашюта и неубираемого шасси (было не у всех моделей), которое смягчало удар о землю. Блок-схема системы управления представления на рисунке 6.

Рисунок 6 – Блок-схема радиоуправления

Радиоуправление позволило беспилотникам следовать по сложным маршрутам и выполнять сложные манёвры в воздухе, превосходя в этом «Жука» Кеттеринга и «Крылатую торпеду» Сперри. Аппараты получили возможность возвращаться на стартовую позицию, что увеличило количество их использования. Малогабаритная конструкция Radioplane OQ-2 и простота позволили развивать ему большие скорости и покрывать большее расстояние. Однако появилась проблема с малым потолком использования в 2438 м.

Аппаратура того времени позволяла эффективно использовать Radioplane OQ-2 только в поле видимости оператора. Именно так оператор с земли мог производить управление беспилотником. Если аппарат вылетал из радиуса видимости, то его можно было контролировать только радаром, что не обеспечивало эффективного наблюдения и снижало точность позиционирования.

При рассмотрении Radioplane OQ-2 можно выявить следующие противоречия:

ТП5. При увеличении дальности, путём увеличения пунктов управления по маршруту движения радиоуправляемого аппарата, недопустимо увеличивается объём наземной аппаратуры управления.

ТП6. При увеличении дальности, путём увеличения пунктов управления по маршруту движения радиоуправляемого аппарата, недопустимо увеличивается количество персонала.

ТП7. При увеличении дальности, путём увеличения объёма топливного бака, недопустимо увеличивается вес.

Второй этап эволюции показан на рисунке 7.

Противоречие ТП7 было разрешено использованием приёмов вынесения, непрерывности полезного действия, «посредника».

Рисунок 7 – Второй этап эволюции

3. Разработки второй мировой войны .

Фау-1 – самолёт-снаряд, прообраз современных крылатый ракет, состоял на вооружении армии Германии в середине Второй мировой войны (рис. 8). Эта ракета создана в рамках проекта «Оружие возмездия». Проект беспилотного аппарата разработан немецкими конструкторами Робертом Луссером и Фритцем Госслау. Разработка производилась в период 1942-1944 гг .

Фау-1 была построена по самолётной схеме, в задней части корпуса над рулём курса крепился реактивный двигатель. В процессе разработки проекта появилась необходимость ввести стабилизаторы и гироскоп для стабилизации аппарата во время полёта.

На земле перед запуском беспилотному аппарату задавали значения высоты и курса, а так же дальность полёта. Наведение выполнялось по магнитному компасу. После пуска аппарата (производился с катапульты, либо с самолёта-носителя – модифицированного бомбардировщика Heinkel He 111 H-22) он летел с помощью автопилота по заданному курсу и на заранее определённой высоте. Стабилизация по курсу и тангажу осуществлялась на базе показаний 3-степенного гироскопа: по тангажу суммировались с показаниями барометрического датчика высоты; по курсу – со значениями угловых скоростей от двух 2-степенных гироскопов, используемых для уменьшения колебаний снаряда. Управление по крену отсутствовало, так как Фау-1 была достаточно устойчива вокруг продольной оси .

Рисунок 8 – Внешний вид Фау-1

Автопилот был пневматическим устройством, работающим на сжатом воздухе. Золотники пневматических машинок рулей курса и высоты приводились в действие воздушным давлением, в зависимости от показаний гироскопов. Сами гироскопы раскручивались также сжатым воздухом. Расстояние полёта задавалось на специальный механический счётчик, а прикреплённый на нос снаряда анемометр постепенно сводил значение к нулю. По достижении нулевого значения происходило разблокирование ударных взрывателей и отключение двигателя. Примерна блок-схема показана на рисунке 9.

Длина – 7.75 м. Размах крыльев – 5,3 (5,7) м. Максимальная скорость – 656 км/ч (по мере расходования топлива скорость доходила до 800 км/ч). Дальность доходила до 280 км.

Фау-1 могла летать только по прямой (как «Жук» Кеттеринга), однако покрывала большее расстояние и развивала гораздо большую скорость.

Рисунок 9 – Блок-схема системы управления.

После рассмотрения Фау-1 были выделены следующие технические противоречия:

ТП8. При упрощении процесса старта, путём отказа от катапульты, недопустимо увеличивается сложность конструкции.

ТП9. При увеличении сложности маршрута недопустимо увеличивается сложность оборудования.

ТП10. При увеличении сложности маршрута недопустимо увеличивается вес аппарата.

На основе вышеописанных противоречий выделен второй этап ТРИЗ-эволюции беспилотных летательных аппаратов (рис. 10).

Противоречия ТП8 и ТП9 были разрешены с помощью приёмов вынесения, непрерывности полезного действия, «посредника», путём замены самолётной схемы на вертолётную.

Рисунок 10 – Третий этап эволюции.

4. Противолодочный вертолёт .

Проект американского беспилотного летательного аппарата, а если точнее бдеспилотного вертолёта. Gyrodyne QH-50 DASH – первый в мире беспилотный вертолёт принятый на вооружение (рис. 11). Первый его полёт состоялся в 1959 году, и вплоть до 1969, когда ВМС США отказались от проекта, было произведено 700 аппаратов различных модификация. Изначально проектировались как штатное противолодочное вооружение ракетных крейсеров .

Рисунок 11 – Внешний вид Gyrodyne QH-50 DASH

Вертолёт был в длину 3,9 м, в высоту 3 м.. Вес неснаряжённого и снаряжённого соответственно 537 кг. и 991кг. Максимальный взлётный вес 1046 кг. Максимальная скорость 148 км/ч. и дальность 132 км. Практический потолок 4939 м. На борту нёс 33,6 галлонов топлива .

В отличие от предыдущих систем, аппарату не требовалась взлётная полоса или оборудование (например, катапульта), а требовалась небольшая ровная поверхность.

Беспилотный вертолёт разрабатывался для старта с палубы корабля. Перед запуском к нему подвешивали торпеды.

Контроль управления вёлся с пульта оператора (блок-схема системы управления представлена на рис. 12). На пульт также приходили данные о состоянии аппарата, сигналы оружейной системы. В дальнейшем было предложено ввести два пульта управления. По требованию, один пульт должен был находиться на палубе, а другой в командном пункте.

Так как торпеды весили много, пришлось отказаться от телеаппаратуры. Поэтому запускали сразу два вертолёта: один с аппаратом обнаружения и целеуказания; второй с вооружением.

Проект Gyrodyne QH-50 DASH был отменён из-за несовершенства системы управления и конструктивных дефектов, почти половина аппаратов разбились. Во время полёта у беспилотного вертолёта могло произойти самопроизвольное отключение аппаратуры управления. Также сказалось начало войны во Вьетнаме. Но использование беспилотного вертолёта вплоть до 2006 года как учебное пособие, объект экспериментов и т.д.

Рисунок 12 – Блок-схема системы управления.

Выделим противоречия беспилотного вертолёта Gyrodyne QH-50 DASH:

ТП11. При уменьшении габаритов беспилотного аппарата недопустимо уменьшается показатель полезной нагрузки.

ТП12. При уменьшении габаритов беспилотного аппарата недопустимо уменьшается дальность полёта.

Противоречия ТП10 и ТП11 были разрешены с помощью приёмов вынесения, объединения, универсальности, замены механической схемы, путём создания доступных контроллеров полёта для авиамоделистов.

По этим противоречиям составим этап ТРИЗ-эволюции (рис. 13).

Рисунок 13 – Четвёртый этап эволюции.

5. « Беспилотники » в массы . Полётные контроллеры для моделирования .

В наше время беспилотные летательные аппараты перестали быть военными «игрушками». В начале XXI века всё больше и больше различных БПЛА находят применение в гражданских сферах: аэросъёмка, доставка грузов, отдых и досуг, образование и др. Появилось множество схем конструкций (мультикоптеры, самолётного типа и др.). Теперь их можно спокойно купить в магазинах или даже сделать самому при покупке определённых комплектующих. О них и пойдёт речь далее.

Полётный контроллер – это основная плата управления, обеспечивающая функционирование беспилотного летательного аппарата.

Одним из первых популярных полётных контроллеров XXI века был MultiWii (рис. 14). Это открытый проект полётного контроллера на основе Arduino (аппаратной вычислительной платформе, основными компонентами которой являются простая плата ввода/вывода и среда разработки на языке Processing/Wirin (Си подобный)). Используется как элемент системы управления самодельных беспилотных аппаратов (в частности для мультикоптеров). Название MultiWii исторически сложилось потому, что в первых версиях были задействованы гироскопы из контроллера к игровой консоли Nintendo Wii.

Рисунок 14 – Внешний вид платы MultiWii

В данный момент платформа поддерживает большое количество сенсоров. Изначально нужно было докупать гироскопы из контроллера Wii Motion Plus и акселерометр из контроллера Wii Nunchuk, однако сейчас этого делать не нужно.

Так как основой проекта служит Arduino, то подключаемые модули (GPS, радио передатчик и т.д.) совместимо с проектом полётного контроллера ArduPilot (подробнее о нём поговорим ниже). По своей сути это плата с контактами, а не готовая система управления, к которой радиолюбитель может присоединять различные модули (в соответствии с нужными целями). Есть возможность настроить управление по радио пульту (с помощью приемника/передатчика радиосвязи) либо простые функции автопилота, такие как движение по точкам (необходим модуль GPS) и удержание курса (магнитометр). Естественно всё это возможно только при правильной настройке контроллера.

Изначально на плате был 8-битный микроконтроллер ATMega328 (тактовая частота до 20MHz, FLASH-память 32кб, SRAM-память 2кб), либо ATMega2560 (тактовая частота 16MHz, FLASH-память 256кб, SRAM-память 8кб). Но, т. к. проект является открытым, появились любительские версии с 32-битным STM32. Так же присутствуют встроенные датчики MPU6050 (3-осевой гироскоп и 3-осевой акселерометр), BMP085 (барометр) и HMC5883L (электронный магнитный компас). Информация представлена в общем виде и может отличаться для различных версий плат.

На рисунке 15 показана блок-схема системы управления.

Предполагаемый алгоритм управления:

1) Необходимо подключить все необходимые для задачи пользователя модули, предварительно записав программу в микроконтроллер (официальную или самодельную).

3) В зависимости от конструкции беспилотного аппарата, следует произвести запуск.

Полётные контроллеры в основном предназначались для радиоуправления. Хоть они и поддерживали некоторые функции автопилота, оператору приходилось контролировать полёт. Например, двигаясь по точкам маршрута, летающий аппарата может врезаться в возникшее препятствие, если не будет принято своевременных мер. Это относится и к остальным моделям полётных контроллеров, описанных ниже.

Рисунок 15 – Блок-схема системы управления.

ТП13. При повышении гибкости настройки управления контроллера недопустимо повышается сложность кода.

ТП14. При повышении гибкости настройки управления контроллера недопустимо повышается количество часов, требуемых на это.

Противоречия ТП13 и ТП14 были разрешены с помощью приёмов вынесения, объединения, универсальности, замены механической схемы.

Этап эволюции показан на рисунке 16.

Рисунок 16 – Пятый этап эволюции.

6. Новые аналоги .

Контроллер CopterControl3D (CC3D) создан в рамках открытого проекта Open Pilot,начатого в 2009 году (рис. 17). Как и MultiWii является небольшой и относительно дешевой программируемой платой, но в отличие от неё разрабатывался специально для квадрокоптеров. Так же получил своё программное обеспечение OpenPilot GCS для настройки. Примерно 90% квадрокоптеров используемых для управления First Person Viev (FPV, вид от первого лица – управление осуществляется не только по радио каналу, но и по дополнительному каналу принимается на экран видео в реальном времени) собираются любителями именно на этом контроллере.

Рисунок 17 – Внешний вид платы CC3D

На плате присутствует 32-битный микроконтроллер STM32F103 72MHz с FLASH-памятью 128кб и чип MPU6000 (совмещает 3-осевой гироскоп и 3-осевой акселерометр).

Информация представлена в общем виде и может отличаться для различных версий плат.

Блок-схема системы управления показана на рисунке 18 (отличия только в интерфейсах подключения устройств).

Рисунок 18 – Блок-схема системы управления

В системе выявлены следующие противоречия:

ТП15. При повышении гибкости управления контроллера, путём добавления функций автопилота, недопустимо повышается сложность кода.

ТП16. При повышении универсальности использования контроллера недопустимо повышается сложность кода.

Противоречия ТП15 и ТП16 были разрешены с помощью приёмов вынесения, универсальности, самообслуживания, «посредника».

Этап эволюции представлен на рисунке 19.

Рисунок 19 – Шестой этап эволюции

7. Решение от Arduino.

Полётный контроллер ArduPilot Mega (рис. 20), разработанный компанией Arduino. Главным отличием от предыдущих является поддержка не только летающих беспилотных аппаратов, но наземных и лодочных систем. Так же помимо радиоуправляемого дистанционного пилотирования – автоматическое управление по заранее созданному маршруту, т.е. полет по точкам, а так же обладает возможностью двухсторонней передачей телеметрических данных с борта на наземную станцию (телефон, планшет, ноутбук и т.д.) и ведение журнала во встроенную память.

Рисунок 20 – Внешний вид платы

Контроллер поддерживает программирование, как и прочие продукты Arduino, язык программирования Arduino (является стандартным C++ с некоторыми особенностями). При грамотной настройке позволяет превратить любой аппарат в автономное средство и эффективно использовать его не только в развлекательных целях, но и для выполнения профессиональных проектов. По сравнению с вышеописанными платами более стабильно ведёт себя во время полёта, может неплохо выполнять некоторые фигуры полёта.

Контроллер поддерживает авиасимулятор через ПО Mission Planner, который позволят настроить управление, проложить маршрут и т.д.

На плате установлен микроконтроллеры ATMega2560 и ATMega32U2 (8-битный, тактовая частота 16 MHz, FLASH-память 32кб, SRAM-память 1 кб), датчики MPU6000 и MS5611 (барометр).

Блок-схема системы управления показана на рисунке 21.

Рисунок 21 – Блок-схема системы управления.

В рассмотренной системе были выявлены следующее противоречие:

ТП17. При повышении гибкости управления контроллера недопустимо уменьшается универсальность использования контроллера.

ТП18. При повышении качества платы недопустимо повышается цена.

ТП19. При повышении гибкости управления контроллера недопустимо повышается сложность схемы подключения периферии.

Противоречия ТП17 и ТП18 были разрешены с помощью приёмов объединения, дешёвой замены, универсальности, путём создания универсального полётного контроллера.

На рисунке 22 показан этап эволюции.

Рисунок 22 – Седьмой этап эволюции.

8. Новое поколение .

Pixhawk – полетный контроллер нового поколения (рис. 23), дальнейшая разработка проекта PX4 и программного кода Ardupilot от 3DRobotics. В контроллере присутствует операционная система реального времени NuttX.

Контроллер поддерживает большое количество систем:

наземные, воздушные, наводные. Поддерживает различные модули и стандарты для их связи. Из-за своей универсальности и стал популярным. Поддерживает использование ПО Mission Planner как ArduPilot.

Рисунок 23 – Внешний вид контроллера Pixhawk

На плате установлен 32-битный микропроцессор STM32F427 Cortex M4 (168MHz, FLASH-память 2 Мб, RAM- память 256кб) и 32-битный сопроцессор STM32F103. Так же присутствуют датчики: ST Micro L3GD 20 – 3-осевой гироскоп, ST Micro LSM303D – 3-осевой акселерометр/магнитометр, MPU6000 - 3-осевой акселерометр/гироскоп, MEAS MS5611 – барометр.

Блок-схема системы управления показана на рисунке 24.

Рисунок 24 – Блок-схема системы управления.

Выявим противоречия описанной системы:

ТП20. При повышении гибкости управления аппарата недопустимо повышается сложность аппаратуры управления.

Противоречия ТП20 были разрешены с помощью приёмов объединения, универсальности, путём создания многофункционального БПЛА с открытым кодом для любительских разработок.

Этап эволюции представлен на рисунке 25.

Рисунок 25 – Восьмой этап эволюции.

9. Готовое решение .

В 2010 году французская фирма Parrot выпустила на рынок свой беспилотный летательный аппарат AR.Drone. Через пару лет была выпущена обновлённая версия Parrot AR.Drone 2.0 (рис. 29). Проект квадрокоптера был полностью открыт для идей пользователей, что помогло ему стать хитом.

У Parrot AR.Drone 2.0 имеются четыре мотора мощностью 14,5 Вт. Максимальная скорость – 18 км/ч. Масса дополнительной полезной нагрузки – 150 г. Процессор ARM Cortex A8 с частотой 1 ГГц. с 800 Гц. DSP TMS320DMC64x для обработки видео сигналов. RAM DDR2 1Гбит. Две камеры: основная для съёмки и режима FPV с разрешением 720p; дополнительная камера с разрешением 240p для измерения горизонтальной скорости, расположена снизу.Wi-Fi точка для подключения устройства управления (смартфон или планшет с ОС Android или iOS) .

Рисунок 29 – Внешний вид Parrot AR.Drone 2.0

Открытость проекта позволяет к готовому аппарату подключать дополнительные компоненты. Это была одна из привлекательных черт описываемого квадрокоптера. Также пользователи могли программировать его полётный контроллер, либо создавать различные приложения для управления на языках C, Java и Objectiv-C.

Примерная блок-схема управления представлена на рисунке 30.

Одна из главных проблем всех беспилотных летающих аппаратов заключается в том, что если во время режима автопилота перед ними возникнет препятствие (будь то стена, дерево, другой летающий аппарат или даже человек) столкновения не избежать. Максимум на что можно рассчитывать, что БПЛА попытается остановиться или оператор вовремя вмешается в процесс. Однако, если прогнозы развития верны и в ближайшее время нас ожидает дальнейшее развитие рынка беспилотных летательных аппаратов, эта проблема будет всё больше набирать актуальность.

Рисунок 30 – Блок-схема системы управления.

Выявленные противоречия:

ТП21. При добавлении дополнительной аппаратуры, повышающей функционал автопилота, недопустимо повышается вес аппарата.

10. Дальнейшее развитие .

Дальнейшее развитие беспилотных систем, в том числе БПЛА, заключается во внедрении в систему управления искусственного интеллекта. Интеллектуальная система управления позволит ещё больше развить функции автопилота, автоматизировать беспилотные аппараты. При этом действия оператора сводятся только к подготовке аппарату к началу полёта и непосредственно к самому запуску.

Но возникает техническое противоречие ТП21. Это противоречие разрешается принципами объединения, универсальности, непрерывности полезного действия, «посредника».

Интеллектуальную систему управления можно реализовать на микропроцессорном компьютере (например, Raspberry Pi) с несколькими датчиками (2 видео камеры и лидар). Такая система при движении по заданному маршруту сможет определить появившееся препятствие, которым может быть человек, другой БПЛА или дерево, стена, которые не заметил оператор при составлении маршрута. Данная система будет распознавать объекты методом компьютерного зрения и определять вектор движения этих объектов. После определения вектора движения, система сравнит его с вектором БПЛА и построит маршрут уклонения с минимальным уходом с маршрута. Такая схема несильно повлияет свои весом на характеристики беспилотного летательного аппарата, но значительно повысит степень его «выживаемости».

Литература и примечания :

Куда полетит беспилотник без пилота – День за днем [электронный ресурс] // LIVEJOURNAL.COM: Живой журнал. – Электрон. данные. URL: http://novser.livejournal.com/9293

99.html OQ-2 [электронный ресурс] // AVIA.PRO: Новости авиации. – Электрон. данные. URL: http://avia.pro/blog/oq-2

(дата обращения 14.11.2016 г.). – Заглавие с экрана.

Фау-1 [электронный ресурс] // ANAGA.RU: Информационный портал «Столичный комитет». 2008 г. – Электрон. данные. URL: http://anaga.ru/v-1.htm (дата обращения

17.12.2016 г.). – Заглавие с экрана. Gyrodyne Helicopter Co. Mfg of QH-50 series of VTOL

UAVs. [электронный ресурс] // GYRODYNEHELICOPT ERS.COM: Информационный сайт. – Электрон. данные. URL: http://www.gyrodynehelicopters.com/dash_weapon_system.htm

(дата обращения 14.11.2016 г.). – Заглавие с экрана.

AR.Drone 2.0: обзор возможностей и дополнений [электронный ресурс] // XAKER.RU: Электронный журнал. – Электрон. данные. URL:

ВВЕДЕНИЕ.

1. ОСНОВНЫЕ ПРОБЛЕМЫ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ПОЛЕТОВ БПЛА В ОБЩЕМ ВОЗДУШНОМ ПРОСТРАНСТВЕ.

1.1. Области использования и задачи, выполняемые БПЛА в интересах рыночной экономики.

1.2. Требования к обеспечению безопасности полетов БПЛА в общем воздушном пространстве.

1.3. Классификация беспилотных летательных аппаратов.

1.4. Методы управления БПЛА.

Выводы по первому разделу.

2. МЕТОДОЛОГИЯ НАБЛЮДЕНИЯ И УПРАВЛЕНИЯ ДВИЖЕНИЕМ БПЛА В ОБЩЕМ ВОЗДУШНОМ ПРОСТРАНСТВЕ.

2.1 Техническая реализация принципов автоматического зависимого наблюдения в вещательном режиме.

2.2 Обеспечение целостности при использовании АЗН.

2.3. Проблемы безопасности полетов.

2.4. Теоретическое обоснование использования АЗН.

2.5. Методы и алгоритмы предотвращения потенциально конфликтных ситуаций с участием БПЛА.

2.5.1. Разрешение потенциально конфликтных ситуаций маневром в горизонтальной плоскости.

2.5.2. Разрешение потенциально конфликтных ситуаций маневром в вертикальной плоскости.

Выводы по второму разделу.

3. ПОСТРОЕНИЕ СИСТЕМЫ УПРАВЛЕНИЯ И НАВИГАЦИИ ДЛЯ БПЛА

3.1. Разработка состава оборудования системы управления и навигации для БПЛА.

3.2. Основные принципы функционирования системы управления БПЛА

3.3. Применение линии передачи данных АЗН-В режима 4 для управления БПЛА в общем воздушном пространстве.

3.4. Требования по назначению к модулю автопилота при управлении БПЛА.

Выводы по третьему разделу.

4. КОМПЛЕКС КОНТРОЛЯ И УПРАВЛЕНИЯ БПЛА.

4.1. Назначение, функции и состав комплекса.

4.2. Организация контроля и управления БПЛА.

4.3. Назначение, состав и работа бортовой аппаратуры контроля и управления БПЛА.

4.4. Структура интерфейса оператора комплекса контроля и управления БПЛА.

Выводы по четвертому разделу.

Введение диссертации (часть автореферата) на тему "Методы управления беспилотными летательными аппаратами в общем воздушном пространстве с использованием полетной информации при автоматическом зависимом наблюдении"

Важнейшей задачей воздушного транспорта является обеспечение транспортной доступности в отдаленных регионах страны, что необходимо для их экономического и социального развития. Эта задача возложена на региональную коммерческую гражданскую авиацию, которая должна обслуживать наиболее социально значимые сегменты спроса - местные авиаперевозки, авиационные работы в интересах отраслей экономики, а также сферу некоммерческого использования гражданской авиации - авиации общего назначения (АОН), включающую в себя, в том числе, любительскую и деловую авиацию.

Сегодня приоритетной задачей региональной авиации является обеспечение сообщения между центрами регионов и отдаленными населенными пунктами в регионах Сибири и Крайнего Севера, где самолет является основным, часто единственным средством обеспечения транспортной доступности. В обеспечении материальными ресурсами и создании экспортного сырьевого потенциала России эти регионы имеют первостепенное значение.

Совершенно очевидно, что интерес, который в последнее время проявляют организации ТЭК к использованию БПЛА, закономерен . Имея в своей структуре сотни тысяч километров трубопроводов, которые довольно слабо охраняются, а зачастую и вообще не охраняются, предприятия ТЭК напрямую заинтересованы в использовании беспилотных систем. Простая экономическая выгода подталкивает предприятия ТЭК к принятию решений по использованию БПЛА, и этот процесс, находящийся в данный момент в начальной стадии, будет неуклонно развиваться.

С помощью беспилотных систем можно контролировать как техническое состояние объектов, так и их безопасность, функционирование, притом, что контролируемые объекты могут находиться на большом удалении (протяженные объекты).

Однако применение БПЛА в гражданском секторе в настоящее время находится в ожидании решения некоторых технических и организационных проблем, без чего невозможно стабильное использование БПЛА.

Основные проблемы связаны с использованием воздушного пространства, выделением частотного диапазона для управления БПЛА и передачей информации с борта на землю и наоборот.

Также следует отметить, что основной вопрос в сфере применения БПЛА - это получение беспилотными аппаратами статуса воздушного судна (ВС).

БПЛА, не являясь ВС, не подлежат регистрации в реестре ВС и не имеют Свидетельства о регистрации и годности к использованию. Им невозможно, да и не нужно получать разрешение на использование воздушного пространства. А это уже чревато самыми серьезными последствиями. Аппарат, способный летать на высоте до 4 км со скоростью до 250 км/час, массой около 100 кг, может подняться в воздух без разрешения на использование воздушного пространства, ведь по классификации - это радиоуправляемая модель. В этой ситуации скорее нужны не запретительные меры, а организация разрешительных мероприятий.

В рамках действующего законодательства есть вид авиации, в котором «беспилотники» могут существовать на законном основании. Это -экспериментальная авиация. По этому пути идут и другие страны (США, Европа). В этой отрасли есть многолетний опыт использования летательных аппаратов, а также возможность контроля за техническим состоянием БПЛА и многое другое. Получив статус ВС в рамках экспериментальной авиации, БПЛА смогут использовать воздушное пространство по существующим правилам. Конечно, все БПЛА должны быть застрахованы от ущерба третьим лицам.

БПЛА должны иметь на борту транспондеры, отвечающие всем требованиям ИКАО в этой области. Те БПЛА, которые не способны нести аппаратуру, могут летать только в специально отведенных районах по предварительным заявкам с большим сроком уведомления. 6

Цель всех организаций, участвующих в регламентации использования БПЛА в воздушном пространстве России, состоит в том, чтобы достигнуть уровня безопасности полетов любого класса БПЛА, эквивалентного уровню безопасности полетов самолетов. Для этой цели необходимо разработать технические требования к БПЛА, которые бы способствовали выполнению этой задачи.

БПЛА в последние годы активно применялись военными, поэтому наработанный ими опыт эксплуатации БПЛА в различных условиях отбрасывать ни в коем случае нельзя. Наоборот, нужно привлечь военных к выработке технических требований к БПЛА с учетом того, что цели и задачи применения беспилотных аппаратов в гражданском секторе некоторым образом отличаются от задач, решаемых военными.

Таким образом, можно отметить тот факт, что использование БПЛА в воздушном пространстве России не только возможно, но и необходимо. Полеты БПЛА возможны при условии выполнения требований (выработанных) для получения Свидетельств о летной годности и регистрации. Это можно сделать в рамках экспериментальной авиации.

Вместо этого на практике существует следующая ситуация. Большинство образцов беспилотных летательных аппаратов создаются в инициативном порядке, с использованием доступных комплектующих. Говорить об унификации и стандартизации не приходится. Как следствие, в России эксплуатируются десятки (если не сотни) разнотипных аппаратов, наиболее распространенные семейства которых насчитывают по несколько десятков машин. Говорить же о создании полноценной системы, которая бы включала в себя не только летательные аппараты, но и мощную наземную инфраструктуру, могут только единичные разработчики и производители.

Отсутствие законодательной и нормативной базы в области беспилотной авиации создает разработчикам и потенциальным эксплуатантам серьезные проблемы. Даже в оборонной области проектные работы регламентируются общетехническими требованиями 20-летней давности, а для проектирования коммерческих БПЛА никакой нормативной базы не существует вовсе. В 7 настоящее время в правительстве идет работа над программой возрождения малой авиации, в которую составной частью войдет и беспилотная авиация. В условиях, когда рынок имеет большой потенциал для роста, необходимо консолидировать усилия разработчиков, заказчиков и всех ветвей власти.

В настоящее время контролю уровня безопасности полетов придается исключительное значение. Это вызвано ростом объемов воздушных перевозок и тяжестью последствия воздушных катастроф. Для повышения эффективности функционирования системы управления воздушным движением (УВД) требуется оптимизировать существующие функции контроля за соблюдаемым уровнем безопасности полетов. Для этого, используя современные методы обработки информации, нужно иметь возможность оперативно контролировать текущий уровень безопасности полетов.

При вычислении оперативной оценки уровня безопасности полетов должна использоваться наиболее полная информация о движении ВС (в том числе и БПЛА) в текущий момент времени и структуре контролируемого воздушного пространства. При этом выделяют несколько задач: оценка уровня безопасности при полетах на трассах, в зоне подхода, при взлете и посадке ВС, руление в зоне аэродрома. Задача разработки практически приемлемых схем и маневров, разрешающих потенциально конфликтную ситуацию пары воздушных судов, является крайне важной для обеспечения безопасности воздушного движения.

Следует отметить, что наблюдение за воздушными судами, осуществляющими полет в национальном воздушном пространстве, является составной частью существующей системы управления воздушным движением

России. В настоящее время технология наблюдения основывается на использовании первичного и вторичного радиолокаторов. Хотя эта технология и сохранит свое значение для УВД в обозримом будущем, в ИКАО рассматриваются новые, обеспечивающие наблюдение, технологии, применение которых за рубежом уже частично началось, несмотря на отсутствие единого взгляда на концепцию и ее конкретную техническую реализацию. В России разработана эксплуатационная концепция одной из таких 8 новых технологий, использование которой, как видится, могло бы обеспечить наиболее рациональный для наших условий путь перехода к будущей системе С№/АТМ. Данная технология основывается на сочетании надежных и точных бортовых навигационных систем и надежной системы связи по линии передачи данных (ЛПД), которая транслирует полученную на борту информацию о координатах воздушного судна всем заинтересованным в ее использовании потребителям. Упомянутая технология получила название радиовещательного автоматического зависимого наблюдения (АЗН-В).

Применение АЗН-В не будет ограничиваться традиционными функциями, ассоциирующимися с наземными радиолокационными системами, а обеспечит новые возможности, реализуемые как на борту воздушного судна, так и на автоматизированных рабочих местах диспетчеров УВД. АЗН-В объединяет, фактически, две технологии: на основе ЛПД «воздух-земля» и ЛПД «воздух-воздух». Эксплуатационная концепция представляет сценарии АЗН-В, которые будут реализовываться на эволюционной основе при принятии- решения о развертывании радиовещательного АЗН в России. Эксплуатационная концепция не акцентирует внимание на выборе или определении технических деталей реализации АЗН-В, а нацелена на обеспечение будущих эксплуатационных потребностей, а также плавного экономически выгодного перехода от существующей системы наблюдения радиолокационного типа к перспективной, на базе АЗН-В.

Таким- образом, требования нормативно-правовых документов, проводимые исследования в области управления БПЛА при организации воздушного движения показывают, что в настоящее время существуют противоречия между:

Возросшим объемом задач для БПЛА, решаемых в интересах народного хозяйства России, и отсутствием нормативно-законодательной базы для их использования;

Уровнем потенциальных возможностей БПЛА дальнего радиуса действия и запретом их использования в общем воздушном пространстве;

Требованием поддержания паритета с уровнем развития БПЛА в индустриально и технологически развитых государствах и современным состоянием разработки, унификации, стандартизации «беспилотников» в гражданской авиации России;

Отсутствием в настоящее время трудов, носящих системный характер, направленных на создание системы правил использования БПЛА в общем воздушном пространстве, и насущной потребностью в этом;

Ростом производительности и надежности применяемых технических средств (в частности систем АЗН) и отсутствием тенденции их использования при управлении БПЛА.

Изложенные выше частные противоречия позволяют сформулировать главное противоречие, которое заключается в том, что существующий уровень развития методов управления БПЛА на основе вещательного автоматического зависимого наблюдения позволяет обеспечить координацию полетов БПЛА, но при этом отсутствует нормативно-правовая база для их использования в общем воздушном пространстве.

Сформулированные частные противоречия и их обобщение позволяют уяснить, что без их устранения невозможно дальнейшее полноценное использование БПЛА, а, следовательно, и развитие гражданской авиации России.

Сложившееся положение в области управления БПЛА, изложенные выше противоречия и предопределили актуальность темы диссертации, направленной на разработку методов управления беспилотными летательными аппаратами в общем воздушном пространстве с использованием полетной информации при автоматическом зависимом наблюдении.

Объектом исследования в работе является управление воздушным движением беспилотных летательных аппаратов.

Предметом исследований - методы управления беспилотными летательными аппаратами в общем воздушном пространстве путем использования новых информационных технологий сбора, обработки и передачи навигационных данных и команд управления.

Цель диссертационной работы: повышение безопасности полетов беспилотных летательных аппаратов в общем воздушном пространстве на основе применения новых методов их управления с использованием полетной информации при автоматическом зависимом наблюдении.

Для достижения указанной цели поставлены и решены следующие задачи исследований:

1 - Проведен анализ технических характеристик беспилотных летательных аппаратов и областей их применения для решения задач народного хозяйства страны.

2 - Систематизированы требования к методам управления полетами БПЛА в общем воздушном пространстве, обеспечивающим безопасность полетов всех участников воздушного движения.

3 - Разработаны алгоритмы разрешения ПКС между БПЛА и ВС в общем воздушном пространстве.

4 - Исследована проблема информационной безопасности АЗН как проблема целостности и конфиденциальности передачи данных.

5 - Разработан алгоритм контроля достоверности передаваемых данных.

6 - Разработана структура и определены функции наземного и бортового оборудования для управления БПЛА.

Методы исследования. Расчетно-аналитическое описание исследований основано на общей теории управления и общей теории динамических систем, на применении теории вероятностей, общей теории статистики, теории надежности, теории конечных автоматов и алгоритмов, теории оптимальных решений, методов математического анализа и программирования.

Основными исходными данными для проведения исследований являются: соответствующие положения нормативно-правовых документов; протоколы государственных испытаний сети вещательного автоматического зависимого наблюдения; результаты выполненных научно-исследовательских и опытно-конструкторских работ.

Достоверность результатов исследований подтверждается результатами экспериментальных проверок предлагаемых способов и методов управления БПЛА.

В качестве информационной базы исследований использовались рекомендации документов ИКАО и Евроконтроля, нормативные документы МТ РФ и ФАВТ.

Структура диссертации и краткая аннотация"каждого раздела.

Диссертация состоит из введения, 4 разделов, заключения, списка использованных источников из 93-х наименований, 3-х приложений.

Заключение диссертации по теме "Навигация и управление воздушным движением", Токарев, Юрий Петрович

Выводы по четвертому разделу

1. Предложенный комплекс (модель) контроля и управления БПЛА обеспечивает решение совокупности задач, связанных с управлением БПЛА, обработкой координатной информации, отображением принятой информации, отображением маршрутов планируемого и реального полёта БПЛА на фоне карты местности выполнения полёта, формированием команд управления в ручном режиме полёта, оперативной регистрацией всего объёма принимаемых от каждого БПЛА данных и переданных команд управления.

2. Данный комплекс управления поддерживает работу всех штатных режимов контроля и управления БПЛА. В нем реализованы новейшие разработки аппаратуры управления, применены новейшие информационные технологии.

3. Результаты испытаний данного комплекса управления показали, что его использование с применением АЗН-В возможно для управления полетами БПЛА в общем воздушном пространстве.

4. Разработанный комплекс контроля и управления БПЛА способен; выполнять свои задачи в группе (строю) с другими летальными аппаратами в общем воздушном пространстве.

ЗАКЛЮЧЕНИЕ

В последнее время в нашей стране вопросам создания и управления движением БПЛА уделяется все большее внимание.

Но следует отметить, что, несмотря на привлекательность, кажущиеся, доступность и простоту тематики БПЛА, она в реальности является не только весьма сложной технической задачей, но и серьезнейшей идеологической проблемой, поскольку затрагивает вопросы идеологии организации экономической политики государства. Нормативно-правовая база вопросов применения БПЛА в общем воздушном пространстве в настоящее время нуждается в доработке.

Разработке методов управления беспилотными летательными аппаратами в общем воздушном пространстве с использованием полетной информации при автоматическом зависимом наблюдении и посвящена данная диссертационная работа, в ходе которой достигнута заявленная цель исследований, поставленные задачи решены.

Проведенные в диссертационной работе исследования привели- к созданию методологии, обеспечивающей безопасное управление полетами беспилотных летательных аппаратов в общем воздушном пространстве. При этом получены следующие основные результаты:

1 Выполнен анализ перспективной технологии наблюдения АЗН-В за воздушными судами, которая обеспечивает диспетчеру УВД, наряду с радиолокационным наблюдением, и спутниковое поле наблюдения, гарантирующее высокую точность определения координат независимо от направления и расстояния до наблюдаемого объекта: до 15 м или до 2 м при использовании локальной контрольно корректирующей станции.

2 Разработана и экспериментально подтверждена технология управления полетом БПЛА в общем воздушном пространстве, отличающаяся тем, что команды управления передаются (в условиях прямой радиовидимости) на борт БПЛА с наземного пункта управления оператором по ЛПД АЗН-В.

3 Установлено, что уровень целостности АЗН-В можно оценить

139 показателем вероятности потери или искажения данных о положении БПЛА. Предложен метод оценки искажения данных о положении БПЛА, заключающийся в определении времени задержек при прохождении сигнала от источника излучения и измерения расстояния до БПЛА, вычисляемого по координатам. Если разность вычисленных координат превышает по модулю допустимую величину, то принимают решение об искажении данных. За счет этого повышается достоверность данных передаваемых по ЛПД.

4 Предложены методы и алгоритмы предотвращения потенциально конфликтных ситуаций с участием БПЛА. Маневры БПЛА оптимизированы с учетом особенностей распространения информации АЗН-В, таких как точность, периодичность, заблаговременность.

5 Предложен способ управления БПЛА и устройство для его реализации. Способ управления защищен авторским свидетельством (патент на изобретение № 2390815). Устройство реализует методы управления, в которых осуществляется сравнение расчетных прогнозируемых значений параметров полета БПЛА с текущими значениями координат, полученными от приемника спутниковой навигационной системы, и при их неравенстве вырабатываются соответствующие сигналы по трем каналам управления вращательного движения и по каналу продольного движения.

6 Определены принципы построения программно-аппаратного комплекса контроля и управления БПЛА и разработаны требования к человеко-машинному интерфейсу.

7 Научно обоснован минимальный перечень команд управления для обеспечения безопасности воздушного движения БПЛА в общем воздушном пространстве, который обеспечивает его управление при навигационном управлении.

8 Результаты испытаний подтверждают возможность их использования для управления полетами БПЛА в общем воздушном пространстве.

9 АЗН-В позволяет эксплуатировать БПЛА в общем воздушном пространстве, так как интегрируется в автоматизированную систему УВД и обеспечивает за счет широковещательной передачи координат движения БПЛА

140 информацию по узкополосному каналу ЛПД для всех участников движения, что обеспечивает безопасность воздушного движения.

Дальнейшие исследования целесообразно проводить в области совершенствования работы сети АЗН-В для управления движением БПЛА в общем воздушном пространстве.

Список литературы диссертационного исследования кандидат технических наук Токарев, Юрий Петрович, 2011 год

1. Кулик A.C., Гордин А.Г., Нарожный В.В., Бычкова И.В., Таран А.Н. Проблематика разработки перспективных малогабаритных летающих роботов. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт», Украина, 2005

2. Управление и наведение беспилотных маневренных летательных аппаратов на основе современных информационных технологий /Под ред. М.Н. Красилыцикова, Г.Г. Себрякова. М.: Физматлит, 2003.

3. Вилкова Н. Н., Сухачев А. Б. Россия должна вернуться в ряд ведущих «беспилотных» держав. // Национальная оборона. №10 (19), октябрь 2007, с.48-54.

4. Сухачев А. Б. Беспилотные летательные аппараты. Состояние и перспективы развития. М.: МНИТИ, 2007, 60 с.

5. Сухачев А. Б., Мелькумова Н. Г., Шапиро Б. Л.,- Ерема С. Л. Исследование технико-экономических характеристик перспективных комплексов беспилотных летательных аппаратов.//Электросвязь,. №5, 2008, | с. 16-20.

6. Беспилотные самолеты вертикального взлета и посадки: Выбор схемы и определение проектных параметров / Н. К. Лисейцев, В. 3. Максимович и др.; Под ред. д-ра техн. наук, проф. Н. К. Лисейцева.- Из-во МАИ-ПРИНТ, 2009.- 140с.

7. Трубников Г. В. Опыт развития гражданских беспилотных систем и услуг в России. // Труды Второго Московского Международного Форума «Беспилотные многоцелевые комплексы в интересах ТЭК». М. Экспоцентр, 29-31 января 2008 г.

8. Беспилотные летательные аппараты // AeroBusiness., Сурков A.M., 1998. №1. С. 35 -37

9. Миниатюризация - новое направление развития информационных беспилотных комплексов // ГосНИИАС. Авиационные системы. Научно-техническая информация. 2001/2.

10. Беспилотные летательные аппараты. Состояние и тенденции развития/ Под ред. Иванова Ю.Л. М.: Варяг, 2004.

11. Развитие, основы устройства, проектирования, конструирования и производства летательных аппаратов (дистанционно-пилотируемые летательные аппараты)/ Под ред. Голубева И.С., Янкевича Ю.И. М.: Изд-во МАИ, 2006.

12. Концепция и системы CNS/ATM в гражданской авиации / Бочкарев В. В., Кравцов В. Ф., Крыжановский Г. А. и др.; Под ред. Г. А. Крыжановского.-М.: ИКЦ «Академкнига», 2003.- 415 с.

13. Бабаскин В. В., Королькова М. А., Олянюк П. В., "Чепига В. Е. Воздушный транспорт в современном мире / под ред. П. В. Олянюка. С-Пб.: Государственный университет ГА, 2010-ЗЗбс.

14. Фальков Э.Я. Об организации полетов беспилотных летательных аппаратов в гражданском воздушном пространстве// Тезисы докладов 5-международной конференции «Авиация и космонавтика 2006». - М.: МАИ, 2006.

15. Авиационная миссия Москвы: Ставка на малую авиацию и новые технологии. // «Авиапанорама», март-апрель 2008.

16. Авиационная миссия Москвы: Восстановлен воздушный мост для Золотого кольца России. // «Авиапанорама», май-июнь 2008.

17. Авиационная миссия Москвы: Базовый принцип безопасного управления // «Авиапанорама», июль-август 2008.

18. Авиационная миссия Москвы: Авиатакси и не только // «Авиапанорама», сентябрь-октябрь 2008.

19. Беляев В. Война в воздухе. Новая угроза. Авиация и космонавтика вчера, сегодня, завтра. №4, 2004

20. США разрабатывают самолет-убийцу./ Интерфакс-АВН. Известия №51,2005

21. Авиационная электросвязь. Приложение 10 к Международной конвенции ИКАО (t.IV: Системы обзорной радиолокации и предупреждения столкновений). Монреаль, 1995.

22. Tomlin C, Lygeros J., Sastry S. Synthesizing Controllers for Nonlinear Hybrid Systems. Report of the Research under NASA Grant NAG-2-1039. University of California, Department of Electrical Engineering and Computer Sciences. 1997. 16 pp.

23. ГОСТ 20058-80. Динамика летательных аппаратов в атмосфере. Термины, определения и обозначения. М.: Госстандарт. 1980.

24. Автоматизированные системы управления воздушным движением: Справочник / Савицкий В.И., Василенко В.А. и др. М.: Транспорт,Л 986. 192 с.

25. Патент № US2008033604 "System and Method For Safely Flying Unmanned Aerial Vehicles in Civilian Airspace", опубл., 2008-02-07, http://v3.espacenet.com.

26. Minimum Aviation System Performance Standards For Automatic Dependent Surveillance Broadcast (ADS-B). RTCA/DO-242A. RTCA, Inc. 2002.

27. Автоматизированное управление самолетами и вертолетами / Федоров С.М., Кейн.В.М., Михайлов О.И., Сухих Н.Н. М.: Транспорт, 1992, 266с.

28. Токарев Ю.П. Автоматическое зависимое наблюдение в условиях интенсивного развития беспилотной авиации. Транспорт: наука, техника, управление. ВИНИТИ. 2006, №8, с. 17-20.

29. Токарев Ю.П. Применение линии передачи данных для управлениябеспилотным летательным аппаратом. СПб: Научно-технические ведомости

30. СПбГПУ. Информатика. Телекоммуникации. Управление. №6 (113)/2010, с. 7144

31. Руководство по применению линий передачи данных в цепях обслуживания воздушного движения: Doc/9694 AN/ 995/ - Монреаль, 1999, Юс.

32. Привалов A.A. Метод топологического преобразования стохастических сетей и его использование для оценки эффективности систем связи ВМФ. СПб: BMA, 2000г., 160 с.

33. Привалов A.A., Чемиренко В.П. и др. Модели и методы исследования сетей связи ВМФ. СПб: BMA, 2003 г., 219 с.

34. Красовский H.H. Теория управления движением. М: Наука, 1968,476с.

35. Красовский H.H., Субботин А.И. Позиционные дифференциальные игры. М: Наука, 1974, 456с.

36. Куржанский А.Б. Управление и наблюдение в условиях неопределенности. -М: Наука, 1977, 392с.

37. Автоматизированные системы управления воздушным движением: Новые информационные технологии в авиации: Учеб. Пособие / P.M. Ахмедов, A.A. Бибутов, A.B. Васильев и др.; Под ред. С.Г. Пятко и А.И. Красова. СПб: Политехника, 2004, 446с.

38. Кейн В.М. Оптимизация систем управления по минимаксному критерию. -М.: Наука, 1985. 248 с.

39. Кумков С.И. Конфликтные ситуации в пространстве, маневр по вертикали. Отчет по НИР "Алгоритмы обнаружения и разрешения конфликтных ситуаций применительно к конкретным районам УВД". ИММ УрО РАН, Екатеринбург, 2002. 47с.

40. Kumkov S. I. Conflict Detection and Resolution in Air Traffic Control // IF AC on-line Journal on Automatic Control in Aerospace, AS-09-004, 2009, 7 pp.

41. Анодина Т.Г., А. А. Кузнецов A.A., Е. Д. Маркович. Е.Д. Автоматизация управления воздушным движением. М: Транспорт, 1992.

42. Белкин A.M., Н. Ф. Миронов Н.Ф., Ю. И. Рублев Ю.И., Сарайский Ю.Н. М: Воздушная навигация: справочник. Транспорт, 1998.

43. Токарев Ю.П. // Флуктуационные явления на ОВЧ линии передачи данных режима 4. Тезисы докладов XXXIX научной конференции студентов, аспирантов" и молодых ученых, посвященной памяти авиаконструктора И. И. Сикорского. СПбГУГА, 2007. с. 14.

44. Токарев Ю.П. Особенности применения ОВЧ линии передачиданных режима 4 на беспилотных летательных аппаратах. // Тезисы докладов

45. XXXIX научной конференции студентов, аспирантов и молодых ученых,146посвященной памяти авиаконструктора И. И. Сикорского. СПбГУГА, 2007. с.15.

46. Бочкарев В.В., Крыжановский Г.А., Сухих Н.Н Автоматизированное управлениедвижением авиационного транспорта. \ Под. Ред. Г.А. Крыжановского,. ¡Транспорт, 1999. 319с.

47. Королев E.H. Технологии работы диспетчеров управления воздушным движением. М: Воздушный транспорт, 2000, 155с.

48. Липин A.B., Олянюк П.В. Бортовые системы предотвращения столкновений воздушных судов. Учебное пособие. СПб.: Академия гражданской авиации, 1999. 54 с.

49. Пятко С.Г. Методы повышения точности прогнозирования траекторий полета самолетов в автоматизированных системах управления воздушным движением. Дисс. на соискание ученой степени канд. техн. наук. Л, ОЛАГА, 1985, 188 с.

50. Пятко С.Г. Методы прикладной теории наблюдения на основе информационных множеств в автоматизированных системах управления воздушным движением. Дисс. на соискание ученой степени доктора техн. наук. С-Пб, АГА, 2000, 370 с.

51. Токарев Ю.П. Применение АЗН-В в задачах обеспечениябезопасности движения БПЛА. // Тезисы докладов XLII научно-техническойконференции студентов, аспирантов и молодых учены, посвященной памяти147авиаконструктора И. И. Сикорского. СПбГУГА, 2010. с.21.

52. Eduardo D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems. Second Edition, Springer, New York, 1998.

53. Пацко B.C., Пятко С.Г., Кумков A.A., Федотов A.A. Оценивание движения воздушного судна на основе информационных множеств при не полных замерах координат: Научные доклады. - СПб: Академия гражданской авиации, 1999; ИММ УрО РАН, Екатеринбург, 1999.

54. Пятко С.Г. Скользящая модернизация систем УВД. - СПб, Типография фирмы «НИТА», выпуск 2, 2003.

55. Правила аэронавигационного обслуживания. Организация воздушного движения. Doc 4444 ATM/501. ИКАО. Издание пятнадцатое, 2007

56. Правила аэронавигационного обслуживания. Производство полетов воздушных судов. Том 1. Правила производства полетов. Doc 8168-OPS/611, Том 1. ИКАО, Издание пятое, 2006

57. Правила аэронавигационного обслуживания. Производство полетов воздушных судов. Том 2. Построение схем визуальных полетов. Doc 8168-OPS/611, Том 2. ИКАО, Издание пятое, 2006

58. Руководство по навигации, основанной на характеристиках (PBN). Doc 9618-AN/937, ИКАО, Издание третье, 2008

59. Руководство по планированию воздушного пространства. Основные принципы. ASM.ET1 .ST03.4000.EAPM.01.02. Издание 1. Евроконтроль. 2002

60. Глобальная эксплуатационная концепция ОрВД. Doc 9854-AN/458, ИКАО, Издание первое, 2005

61. Обслуживание воздушного движения. Диспетчерское обслуживание воздушного движения, полетно-информационное обслуживание, служба аварийного оповещения. Приложение 11 к Конвекции о международной авиации. ИКАО, Издание тринадцатое, 2001

62. Справочник по организации воздушного пространства. ASM.ET1 .ST08.5000.HKB-02-00. Издание 2. Евроконтроль. 2003

63. Методика создания и допуска к эксплуатации маршрутовобслуживания воздушного движения. Москва. Госкорпорация по ОрВД. 2008148

64. Федеральные правила использования воздушного пространства Российской Федерации. Утверждены постановлением Правительства Российской Федерации от 11 марта 2010. №138. М. 2010, 45 с

65. Токарев Ю.П., Фальков Э.Я. Полеты беспилотных летательных систем в гражданском воздушном пространстве в рамках существующих стандартов и методов ИКАО. UNMANNED AIRCRAFT SYSTEMS STUDY GROUP (UASSG) SECOND MEETING Montréal, 2 to 5 December, 2008.

66. Токарев Ю.П., Громова Е.Г., Фальков Э.Я., Пятко С.Г. Организация полетов беспилотных летательных систем в общем воздушном пространстве. -М: ВВИА, 20-21 ноября 2008.

68. Токарев Ю.П. Беспилотные воздушные системы (UAS). Потребности и вызовы. Глобальный форум по организации ВД по вопросам гражданско-военного сотрудничества, ИКАО, октябрь 2009.

69. Бортовая аппаратура радиоуправления АЗН-В4Д. Технические условия. НКПГ.464211.001 ТУ. Санкт Петербург, ООО «Фирма «НИТА», 2009, 41 с

70. Бортовая аппаратура радиоуправления «АЗН-В4Д». Руководство по эксплуатации. НКПГ.464211.001 РЭ. Санкт Петербург, ООО «Фирма «НИТА», 2008, 25 с

71. Наземная станция связи, навигации и наблюдения «ПУЛЬСАР-Н». Руководство по эксплуатации. НКПГ.464511.006 РЭ. Санкт Петербург, ООО «Фирма «НИТА», 2008, 60 с.

72. Наземная станция связи, навигации и наблюдения «ПУЛЬСАР-Н». Управляющий модуль. Руководство оператора. НКПГ. 10401-01 34. Петербург, ООО «Фирма «НИТА», 2008, 18 с.

73. Наземная станция связи, навигации и наблюдения «ПУЛЬСАР-Н». Управляющий модуль. Руководство системного программиста. НКПГ. 10401-01 32. Петербург, ООО «Фирма «НИТА», 2008, 11 с.

74. Minimum operational performance specification for VDL mode 4149aircraft transceiver for ADS-B. Version L. ED-108. EUROCAE. 2001, 386 c.

75. Manual on VHF Digital Link (VDL) Mode 4. Doc 9816-AN/448, ИКАО, Издание первое, 2004

76. Системы адаптивного управления летательными аппаратами. / Новиков А.С. и др. М.: Машиностроение, 1987

77. Бабуров В.И. и др. Совместное использование навигационных полей спутниковых радионавигационных систем и сетей псевдоспутников. - СПб.: Агенство «РДК-Принт», 2005

78. Г. О лее он, Д. Пиани Цифровые системы автоматизации и управления. СПб.:Невский Диалект, 2001. -557с.

79. Кузьмин Б.И. Авиационная цифровая электросвязь в условиях150реализации «Концепция ИКАО-ИАТА CNS/АТМ» в Российской Федерации. С-Петербург-Н. Новгород: ООО «Агентство» ВиТ-принт», 2007.- 384 с.

80. Патент № US2008033604 "System and Method For Safely Flying Unmanned Aerial Vehicles in Civilian Airspace", опубл. 2008-02-07, http://v3.espacenet.com.

81. Субботин А.И., Ченцов А.Г. Оптимизация гарантии в задачах управления. М.: издательство «Наука», 1981 год, 288 стр.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

РАЗРАБОТКА СИСТЕМЫ УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ НА БАЗЕ МОБИЛЬНЫХ УСТРОЙСТВ

Лесиканич Алексей Александрович,

Наумов Денис Николаевич,

Шехирев Виталий Иванович,

Григорьев Иван Викторович

Аннотация

В статье рассмотрен способ применения мобильных устройств на базе операционной системы Android в автоматизированной системе управления беспилотными летательными аппаратами, в частности раскрывается пример реализации управления БПЛА через цифровую мобильную сотовую связь стандарта GSM посредством клиент-серверного программного обеспечения развернутого на смартфоне, установленном на летательном аппарате.

Ключевые слова: беспилотный летательный аппарат, БПЛА, система автоматизированного управления

Бытует мнение, что беспилотные летательные аппараты имеют лишь военное предназначение. В России до недавнего времени возможность использования БПЛА, действительно, была только у армии. Беспилотники выполняли задачи по аэросъемке (фото, видео), радиоразведке, обнаружению объектов и прочее. Однако сегодня сфера разработки и создания беспилотных систем вышла далеко за эти пределы. В настоящее время БПЛА применяются по пяти гражданским направлениям помимо ВПК. А именно: чрезвычайные ситуации (поиск людей, предупреждение ЧС, спасательные операции и т. д.); безопасность (охрана объектов и людей, а также их обнаружение); мониторинг (АЭС, ЛЭП, земельные, лесные, нефтегазовые, водные ресурсы, сельское хозяйство и пр.); аэрофотосъемка (геодезия, картография, авиаучет); наука (исследования Арктики, исследование оборудования, НИОКР). С ростом популярности БПЛА растут и требования к системам управления, требования диктуются все новыми областями применения и развитием науки и техники. На данный момент существует множество решений для управления беспилотными летательными аппаратами. В мире представлено большое количество гражданских БПЛА классификации «микро» и «мини», различающихся по своим спецификациям и набору характеристик. Стоит отметить, что в мире наблюдается тенденция развития спроса на гражданские БПЛА. Данная работа посвящена разработке системы управления беспилотным летательным аппаратом широкого радиуса действия. На данном этапе развития гражданские беспилотники имеют малый радиус действия, в отличии от военных аппаратов, так как гражданским нет доступа дорогостоящему спецоборудованию и каналам передачи данных. Разработчикам и моделистам гражданских БПЛК приходится использовать только доступные радио каналы и набирающую популярность Wi-Fi сеть. Увеличение дальности полета дронов и доступности технологии на данный момент актуальная тема для разработчиков. мобильный беспилотный летательный серверный

Наша система управления основана на популярной, доступной и многофункциональной, созданной компанией Google, ОС Android. Устройства на данной операционной системе позволят построить доступную систему управления широкого радиуса действия. Мобильной платформой для нашей системы управления мы выбрали смартфон на базе операционной системы Android. Смартфон обладает высокой производительностью, имеет в своем составе модуль GSM, GPS, WIFI, Bluetooth, камеру, USB интерфейс для подключения внешней периферии. На рынке существует масса производителей смартфонов, это доступная, дешёвая мобильная платформа и как говорится, есть у каждого современного человека под рукой.

Система управления данного проекта основана на микроконтроллере фирмы Microchip Technology Inc., который в свою очередь выполнят функцию управления двигателями квадрокоптера (полетный контроллер). Функции приема передачи данных (удаленное управление) выполняет устройство на базе ОС Android, будем называть его «сервер», в своем проекте мы взяли обычный смартфон на операционной системе Android. Как устройство передачи команд на сервер выбрали планшет на Android, в дальнейшем будем называть «клиент». Сервер непосредственно связан с микроконтроллером по шине USB через чип FT232RL фирмы Future Technology Devices International Limited по шине данных UART МК. Эта микросхема по сути является USB - UART преобразователь.

Данные с сервера поступают на микросхему FT232RL, где они преобразуются на TTL уровень, которые считывает наш МК по шине UART. Также был разработан протокол пакетной передачи данных между МК сервером на базе Android. Используя такое схемное решение, мы не нагружаем МК обработкой USB протокола или модуля WI-FI, тем самым выигрываем на производительности (быстродействии МК) и экономим память МК. Также это позволяет отлаживать программное обеспечение МК с персонального компьютера, не используя специализированного программатора для МК.

Так же это позволит при необходимости менять программное обеспечение МК (прошивать) с сервера. Как видно на схеме (рис. 1) передача данных между сервером и клиентом, а также передача видео изображения от сервера к клиенту могут осуществляться как непосредственно по протоколу UDP в WI-FI сети, так и по средствам Internet и GSM сети через VPN соединение.

Ниже приведена схема передачи данных (рис. 1).

Рисунок 1 - Схема передачи данных

Устройство на базе нашей системы управления по средствам GSM сможет не только получать доступ в Internet и VPN сеть, но обрабатывать команды, полученные по SMS, а также передавать служебные сообщения и данные. Удаленное управление по GSM, а именно с помощью смс сообщение, позволяет экономить интернет трафик и заряд аккумуляторов, так как устройство может находить в режиме ожидания. После получение определенной команды через смс сообщение, сервер запускает протоколы передачи данных и инициализации устройства. При удачном завершение инициализации системы устройство готово к использованию, в противном случае мы получим смс уведомление о причине сбоя инициализации системы.

На данном этапе разработана первая версия приложения, которое реализует данный замысел, так же приложение имеет функцию передачи изображения с камеры сервера на клиент устройство. Это приложение устанавливается как на сервер так и на клиент устройство. Учитывая динамику развития, функционал, популярность и огромный потенциал ОС Android (86 % смартфонов, проданных во втором квартале 2014 года, была установлена операционная система Android. При этом за весь 2014 год было продано более 1 миллиарда Android-устройств), данная система управления будет развиваться и получать новые возможности параллельно развитию самой операционной системы.

Результаты данной работы могут быть применены не только при разработке современных беспилотных летальных аппаратах или радиоуправляемых моделях, но и в любой сфере АСУ, как пример в промышленности в качестве HMI (человеко-машинный интерфейс). Система управления на основе предложенных методов дает возможность выполнять ряд ключевых функций, которые в настоящее время осуществляет дорогостоящего оборудования и тем снизить стоимость конечного продукта

Библиографический список

1. Беспилотные летательные аппараты, bp-la.ru.

2. Беспилотные летательные аппараты (БЛА) зарубежных стран. Боевое применение, modernarmy.ru

3. Беспилотные летательные аппараты: Методики приближенных расчетов основных параметров и характеристик, http://uav-sam.com

4. Слюсар, Вадим. Передача данных с борта БПЛА: стандарты НАТО.. Электроника: наука, технология, бизнес. - 2010. - № 3. С. 80 - 86. (2010).

5. Слюсар, Вадим. Радиолинии связи с БПЛА: примеры реализации.. Электроника: наука, технология, бизнес. - 2010. - № 5. C. 56 - 60. (2010).

6. П. Дейтел, Х. Дейтел, Э. Дейтел, М. Моргано. Android для программистов. Создаем приложения. - Питер, 2013, ISBN: 978-5-459-016468

7. С. Хашими, С. Коматинени, Д. Маклин. Разработка приложений для Android. - Питер -2011, ISBN: 978-5-459-00530-1.

8. Сатия Коматинени, Дэйв Маклин. Android 4 для профессионалов. Создание приложений для планшетных компьютеров и смартфонов = Pro Android 4. -- М.: Вильямс. -- 880 с. -- ISBN 978-5-8459-1801-7.

9. Коматинэни С., Маклин Д., Хэшими С. Google Android: программирование для мобильных устройств = Pro Android 2. -- 1-е изд. -- СПб.: Питер, 2011. -- 736 с. -- ISBN 978-5-459-00530-1.

Размещено на Allbest.ru

Подобные документы

    История появления и развитие операционных систем для обеспечения надежной и оптимальной работы мобильных устройств. 10 самых известных мобильных ОС. Windows Phone, Android. iOS - версии и их характеристики. ОS Symbian, Maemo, базирующаяся на Debian Linux.

    контрольная работа , добавлен 15.12.2015

    Структурная и функциональная схема управления исполнительными устройствами на базе шагового двигателя. Проектирование принципиальной схемы управления шаговым двигателем, описание ее работы и входящих в нее устройств. Составление алгоритма работы системы.

    курсовая работа , добавлен 22.09.2012

    Состояние проблемы автоматического распознавания речи. Обзор устройств чтения аудио сигналов. Архитектура системы управления периферийными устройствами. Схема управления электрическими устройствами. Принципиальная схема включения электрических устройств.

    дипломная работа , добавлен 18.10.2011

    Общая характеристика электроэрозионного оборудования. Описание существующего проволочного станка AC Classic V2. Разработка структурной схемы автоматизированной системы управления. Техническая реализация проекта системы управления и диагностики параметров.

    дипломная работа , добавлен 05.04.2012

    Анализ уязвимостей технологии радиочастотной идентификации и мобильной операционной системы. Разработка рекомендаций при использовании протоколов, технологий, операционных систем и программного обеспечения для передачи данных с мобильного телефона.

    курсовая работа , добавлен 23.09.2013

    Принципиальные схемы вычислительного канала, устройств сравнения и контроля, безопасного ввода информации. Разработка алгоритма управления состоянием переезда, передачи и программного обеспечения. Расчет показателей безотказности и безопасности системы.

    курсовая работа , добавлен 08.02.2014

    Разработка системы адаптивного аналого-цифрового преобразования (АЦП) на базе однокристального микроконтроллера. Сравнение АЦП различных типов. Анализ способов реализации системы, описание ее структурной схемы, алгоритма работы, программного обеспечения.

    дипломная работа , добавлен 29.06.2012

    Принципы обеспечения безопасности частной информации на мобильных устройствах. Анализ существующих программных средств, предназначенных для обмена частной информацией. Разработка программного средства, построенного на отечественных алгоритмах шифрования.

    курсовая работа , добавлен 22.09.2016

    Основные возможности микропроцессора AT91SAM9260, проектирование на его базе программно-аппаратного комплекса (ПАК) для облегчения процесса отладки устройств. Описание функциональной схемы. Разработка топологии печатной платы и программного обеспечения.

    дипломная работа , добавлен 10.09.2011

    Расчет и выбор источника питания для электропривода на базе комплектного тиристорного преобразователя. Особенности построения электромеханической характеристики РЭП в замкнутой системе. Проектирование средств сопряжения СЭП и системы управления.