Следствия из аксиомы параллельных прямых доказать. Признаки и свойства параллельных прямых

1. Если две прямые параллельны третьей прямой, то они являются параллельными:

Если a ||c и b ||c , то a ||b .

2. Если две прямые перпендикулярны третьей прямой, то они параллельны:

Если a c и b c , то a ||b .

Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.

3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:

Если ∠1 + ∠2 = 180°, то a ||b .

4. Если соответственные углы равны, то прямые параллельны:

Если ∠2 = ∠4, то a ||b .

5. Если внутренние накрест лежащие углы равны, то прямые параллельны:

Если ∠1 = ∠3, то a ||b .

Свойства параллельных прямых

Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.

1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:

Если a ||b , то ∠1 + ∠2 = 180°.

2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:

Если a ||b , то ∠2 = ∠4.

3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:

Если a ||b , то ∠1 = ∠3.

Следующее свойство является частным случаем для каждого предыдущего:

4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:

Если a ||b и c a , то c b .

Пятое свойство - это аксиома параллельности прямых:

5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой.

§ 1 Аксиома параллельных прямых

Выясним, какие утверждения называются аксиомами, приведем примеры аксиом, сформулируем аксиому параллельных прямых и рассмотрим некоторые её следствия.

При изучении геометрических фигур и их свойств возникает необходимость в доказательстве различных утверждений - теорем. При их доказательстве часто опираются на ранее доказанные теоремы. Возникает вопрос: а на чем основаны доказательства самых первых теорем? В геометрии приняты некоторые исходные положения, на их основе и доказываются далее теоремы. Такие исходные положения называются аксиомами. Аксиома принимается без доказательств. Слово аксиома происходит от греческого слова «аксиос», что означает «ценный, достойный».

С некоторыми аксиомами мы уже знакомы. Например, аксиомой является утверждение: через любые две точки проходит прямая, и притом только одна.

При сравнении двух отрезков и двух углов мы накладывали один отрезок на другой, а угол накладывали на другой угол. Возможность такого наложения вытекает из следующих аксиом:

·на любом луче от его начала можно отложить отрезок, равный данному, и притом только один;

·от любого луча в заданную сторону можно отложить угол, равный данному неразвернутому углу, и притом только один.

Геометрия - древняя наука. Почти два тысячелетия геометрия изучалась по знаменитому сочинению «Начала» древнегреческого ученого Евклида. Евклид сначала формулировал исходные положения - постулаты, а затем на их основе путем логических рассуждений доказывал другие утверждения. Геометрия, изложенная в «Началах», называется евклидовой геометрией. В рукописях ученого есть утверждение, называемое пятым постулатом, вокруг которого очень долгое время разгорались споры. Многие математики предпринимали попытки доказать пятый постулат Евклида, т.е. вывести его из других аксиом, но каждый раз доказательства были неполными или заходили в тупик. Лишь в XIX веке было окончательно выяснено, что пятый постулат не может быть доказан на основе остальных аксиом Евклида, и сам является аксиомой. Огромную роль в решении этого вопроса сыграл русский математик Николай Иванович Лобачевский (1792-1856). Итак, пятый постулат - аксиома параллельных прямых.

Аксиома: через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

§ 2 Cледствия из аксиомы параллельных прямых

Утверждения, которые выводятся непосредственно из аксиом или теорем, называются следствиями. Рассмотрим некоторые следствия из аксиомы параллельных прямых.

Следствие 1. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Дано: прямые а и b параллельны, прямая с пересекает прямую а в точке А.

Доказать: прямая с пересекает прямую b.

Доказательство: если бы прямая с не пересекала прямую b, то через точку А проходили бы две прямые а и с, параллельные прямой b. Но это противоречит аксиоме параллельных прямых: через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной. Значит, прямая с пересекает прямую b.

Следствие 2. Если две прямые параллельны третьей прямой, то они параллельны.

Дано: прямые а и b параллельны прямой с. (а||с, b||с)

Доказать: прямая а параллельна прямой b.

Доказательство: допустим, что прямые а и b не параллельны, т.е. пересекаются в некоторой точке А. Тогда через точку А проходят две прямые а и b, параллельные прямой с. Но по аксиоме параллельных прямых через точку, не лежащую на данной прямой, проходит только одна прямая, параллельна данной. Значит, наше предположение неверно, следовательно, прямые а и b параллельны.

Список использованной литературы:

  1. Геометрия. 7-9 классы: учеб. для общеобразоват. организаций / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2013. – 383 с.: ил.
  2. Гаврилова Н.Ф. Поурочные разработки по геометрии 7 класс. - М.: «ВАКО», 2004, 288с. – (В помощь школьному учителю).
  3. Белицкая О.В. Геометрия. 7 класс. Ч.1. Тесты. – Саратов: Лицей, 2014. – 64 с.

Использованные изображения:

Рис.1-2

Например, дано задание провести две параллельные прямые, причем так, чтобы через данную точку М проходила хотя бы одна из прямых. Таким образом, через заданную точку М проведем взаимно перпендикулярные прямые МN и СD . А через точку N проведем вторую прямую АВ , она должна быть перпендикулярной к прямой МN .

Сделаем вывод: прямая АВ перпендикулярна к прямой МN и прямая СD тоже перпендикулярна в прямой МN , а так как данные прямые параллельны к одной прямой, то, как следствие прямая СD параллельна АВ . Значит, через точку М проходит прямая СD , которая параллельна прямой АВ . Узнаем: можно ли провести еще одну прямую через точку М , чтобы она была параллельна прямой АВ ?

Данное утверждение является ответом на наш вопрос: через точку на плоскости, которая не лежит на данной прямой, можно провести всего одну прямую, которая будет параллельна к данной прямой. Такое отвержение в другой формулировке без доказательств еще в давние времена принял ученый Евклид. Известно, что такие утверждения, принятые без доказательства, называют аксиомами.

Вышеописанное утверждение называется аксиомой о параллельных прямых. Данная аксиома Евклида имеет огромное значение для доказательства многих теорем.

Рассмотрим обратную теорему. Если прямая пересекает параллельные прямые, то и углы, лежащие при параллельных прямых накрест, соответственно равны.

Рис. 3

Доказательство: допустим, что АС и ВD являются параллельными прямыми, тогда прямая АВ является их секущей прямой. Нам нужно доказать, что ÐСАВ =Ð АВD .

Нам нужно провести так прямую АС1 , чтобы ÐС1АВ=ÐАВD . В соответствии с аксиомой параллельности прямых АС1||ВD , в условии же мы имеем АС||ВD . А это означает, что через данную точку А проходят две прямые, причем они параллельны прямой ВD . Получается противоречие аксиоме параллельности прямых, а это означает, что прямая АС1 проведена неверно.

Правильно будет, если ÐСАВ=ÐАВD . Сделаем вывод: в том случае, когда одной из параллельных прямых перпендикулярна данная прямая, то она будет перпендикулярна и ко второй прямой.

Получается, если (MN)^(CD) и (CD)||(AB) , то Ð1=Ð2=90о . А это значит: (MN)^(AB) (Рис. 1) .

Докажем теорему: если две прямые являются параллельными к третьей, то они будут параллельны одна ко второй.

Рис. 4

Пусть прямая a параллельна прямой с и прямая b тоже параллельна прямой с (рис. 4 а) . Нам нужно доказать, что a||b .

Предположим, что прямые a и b не являются параллельными, но они пересекаются в точке М (рис. 4 б) . А это значит, что две прямые a и b , которые параллельны к прямой с проходят через одну точку, а это полное противоречие аксиоме параллельности прямых. Значит наши прямые a и b параллельны.

Немецкий физик Альберт Эйнштейн с помощью математических методов разработал теорию относительности, совершив переворот в физике ХХ в.

Считается, что основы современной математики заложены Эвклидом в его 13-томном труде «Элементы» около 300 г. до н. э. В отличие от предшественников, Евклид объясняет здесь геометрию не с помощью бесчисленных чертежей, но чисто логически. Вначале он описывает целый ряд фактов, которые он считает истинными и непреложными. Эти факты называются постулатами. Один из таких постулатов Евклида, например, гласит: «Из каждой точки можно провести одну прямую к любой другой точке». Затем, исходя из этих постулатов, он выводит все остальное. Тем самым Евклид впервые продемонстрировал современное математическое мышление: исходя из определенных предположений, однажды сделанных и не подвергавшихся больше пересмотру, доказал множество других утверждений.

Столетиями шли споры по поводу пятого постулата Евклида, так называемой аксиомы о параллельных прямых: через любую точку Р, лежащую вне прямой g, можно провести только одну прямую, которая не пересечет g. Такую прямую называют параллельной к прямой g, проходящей через точку Р. Многие ученые стремились не просто принять это положение, а вывести его из первых четырех. Но это оказалось невозможным. Математики стали создавать геометрию, которая основывалась на первых четырех аксиомах Евклида и отвергала пятую. То, что вначале выглядело математической игрой, в начале XX в. оказалось востребованным. Альберт Эйнштейн увидел в этих моделях геометрии основу для своей общей теории относительности.