Смотреть что такое "Теплоэлектростанция" в других словарях. Как работает тепловая электростанция (ТЭЦ)

На тепловых электростанциях люди получают практически всю необходимую энергию на планете. Люди научились получать электрический ток иным образом, но все еще не принимают альтернативные варианты. Пусть им невыгодно использовать топливо, они не отказываются от него.

В чем секрет тепловых электростанций?

Тепловые электростанции неслучайно остаются незаменимыми. Их турбина вырабатывает энергию простейшим способом, используя горение. За счет этого удается минимизировать расходы на строительство, считающиеся полностью оправданными. Во всех странах мира находятся такие объекты, поэтому можно не удивляться распространению.

Принцип работы тепловых электростанций построен на сжигании огромных объемов топлива. В результате этого появляется электроэнергия, которая сначала аккумулируется, а потом распространяется по определенным регионам. Схемы тепловых электростанций почти остаются постоянными.

Какое топливо используется на станции?

Каждая станция использует отдельное топливо. Оно специально поставляется, чтобы не нарушался рабочий процесс. Этот момент остается одним из проблематичных, так как появляются транспортные расходы. Какие виды использует оборудование?

  • Уголь;
  • Горючие сланцы;
  • Торф;
  • Мазут;
  • Природный газ.

Тепловые схемы тепловых электростанций строятся на определенном виде топлива. Причем в них вносятся незначительные изменения, обеспечивающие максимальный коэффициент полезного действия. Если их не сделать, основной расход будет чрезмерным, поэтому не оправдает полученный электрический ток.

Типы тепловых электростанций

Типы тепловых электростанций - важный вопрос. Ответ на него расскажет, каким образом появляется необходимая энергия. Сегодня постепенно вносятся серьезные изменения, где главным источником окажутся альтернативные виды, но пока их применение остается нецелесообразным.

  1. Конденсационные (КЭС);
  2. Теплоэлектроцентрали (ТЭЦ);
  3. Государственные районные электростанции (ГРЭС).

Электростанция ТЭС потребует подробного описания. Виды различны, поэтому только рассмотрение объяснит, почему осуществляется строительство такого масштаба.

Конденсационные (КЭС)

Виды тепловых электростанций начинаются с конденсационных. Такие ТЭЦ применяются исключительно для выработки электроэнергии. Чаще всего она аккумулируется, сразу не распространяясь. Конденсационный метод обеспечивает максимальный КПД, поэтому подобные принципы считаются оптимальными. Сегодня во всех странах выделяют отдельных объекты крупного масштаба, обеспечивающие обширные регионы.

Постепенно появляются атомные установки, заменяющие традиционное топливо. Только замена остается дорогостоящим и длительным процессом, так как работа на органическом топливе отличается от иных способов. Причем отключение ни одной станции невозможно, ведь в таких ситуациях целые области остаются без ценной электроэнергии.

Теплоэлектроцентрали (ТЭЦ)

ТЭЦ используются сразу для нескольких целей. В первую очередь они используются для получения ценной электроэнергии, но сжигание топлива также остается полезным для выработки тепла. За счет этого теплофикационные электростанции продолжают применяться на практике.


Важной особенностью является том, что такие тепловые электростанции виды другие превосходят относительно небольшой мощностью. Они обеспечивают отдельные районы, поэтому нет необходимости в объемных поставках. Практика показывает, насколько выгодно такое решение из-за прокладки дополнительных линий электропередач. Принцип работы современной ТЭС является ненужной только из-за экологии.

Государственные районные электростанции

Общие сведения о современных тепловых электростанциях не отмечают ГРЭС. Постепенно они остаются на заднем плане, теряя свою актуальность. Хотя государственные районные электростанции остаются полезными с точки зрения объемов выработки энергии.

Разные виды тепловых электростанций дают поддержку обширным регионам, но все равно их мощность недостаточна. Во времена СССР осуществлялись крупномасштабные проекты, которые сейчас закрываются. Причиной стало нецелесообразное использование топлива. Хотя их замена остается проблематичной, так как преимущества и недостатки современных ТЭС в первую очередь отмечают большие объемы энергии.

Какие электростанции являются тепловыми? Их принцип построен на сжигании топлива. Они остаются незаменимыми, хотя активно ведутся подсчеты по равнозначной замене. Тепловые электростанции преимущества и недостатки продолжают подтверждать на практике. Из-за чего их работа остается необходимой.

На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.

Рис. 1.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции - это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название - ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.

Промышленные электростанции - это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС - тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива - мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь - низкокалорийный уголь или отходы добычи высококалорийного каменного угля (антрацитовый штыб - АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину - паровую турбину. ПТУ - основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Традиционная современная газотурбинная установка (ГТУ) - это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Парогазовые тепловые электростанции комплектуются парогазовыми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ). В настоящее время в России работает четыре новых ПГУ-ТЭЦ (Северо-Западная ТЭЦ Санкт-Петербурга, Калининградская, ТЭЦ-27 ОАО «Мосэнерго» и Сочинская), построена также теплофикационная ПГУ на Тюменской ТЭЦ. В 2007 г. введена в эксплуатацию Ивановская ПГУ-КЭС.

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок - энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

По уровню начального давления различают ТЭС докритического давления, сверхкритического давления (СКД) и суперсверхкритических параметров (ССКП).

Критическое давление - это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД - 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам выполняется с промежуточным перегревом и по блочной схеме. К суперсверхкритическим параметрам условно относят давление более 24 МПа (вплоть до 35 МПа) и температуру более 5600С (вплоть до 6200С), использование которых требует новых материалов и новых конструкций оборудования. Часто ТЭС или ТЭЦ на разный уровень параметров строят в несколько этапов - очередями, параметры которых повышаются с вводом каждой новой очереди.

Электрической станцией называется энергетическая установка, служащая для преобразования природной энергии в электрическую. Наиболее распространены тепловые электрические станции (ТЭС), использующие тепловую энергию, выделяемую при сжигании органического топлива (твердого, жидкого и газообразного).

На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.

Высокий технический уровень энергетики может быть обеспечен только при гармоничной структуре генерирующих мощностей: в энергосистеме должны быть и АЭС, вырабатывающие дешевую электроэнергию, но имеющие серьезные ограничения по диапазону и скорости изменения нагрузки, и ТЭЦ, отпускающие тепло и электроэнергию, количество которой зависит от потребностей в тепле, и мощные паротурбинные энергоблоки, работающие на тяжелых топливах, и мобильные автономные ГТУ, покрывающие кратковременные пики нагрузки.

1.1 Типы тэс и их особенности.

На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.

Рис.1. Типы тепловых электростанций на органическом топливе.

Рис.2 Принципиальная тепловая схема ТЭС

1 – паровой котёл; 2 – турбина; 3 – электрогенератор; 4 – конденсатор; 5 – конденсатный насос; 6 – подогреватели низкого давления; 7 – деаэратор; 8 – питательный насос; 9 – подогреватели высокого давления; 10 – дренажный насос.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции – это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название – ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.

Промышленные электростанции – это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС – тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива – мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь – низкокалорийный уголь или отходы добычи высококалорийного каменного угля (антрацитовый штыб - АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину – паровую турбину. ПТУ – основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Традиционная современная газотурбинная установка (ГТУ) – это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Парогазовые тепловые электростанции комплектуются парогазовыми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ). В настоящее время в России работает четыре новых ПГУ-ТЭЦ (Северо-Западная ТЭЦ Санкт-Петербурга, Калининградская, ТЭЦ-27 ОАО «Мосэнерго» и Сочинская), построена также теплофикационная ПГУ на Тюменской ТЭЦ. В 2007 г. введена в эксплуатацию Ивановская ПГУ-КЭС.

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок – энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

По уровню начального давления различают ТЭС докритического давления, сверхкритического давления (СКД) и суперсверхкритических параметров (ССКП).

Критическое давление – это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД – 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам вполняется с промежуточным перегревом и по блочной схеме. К суперсверхкритическим параметрам условно относят давление более 24 МПа (вплоть до 35 МПа) и температуру более 5600С (вплоть до 6200С), использование которых требует новых материалов и новых конструкций оборудования. Часто ТЭС или ТЭЦ на разный уровень параметров строят в несколько этапов – очередями, параметры которых повышаются с вводом каждой новой очереди.

Гилев Александр

Достоинства ТЭС:

Недостатки ТЭС:

Например :

Скачать:

Предварительный просмотр:

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ТЭС И АЭС С ТОЧКИ ЗРЕНИЯ ЭКОЛОГИЧЕСКОЙ ПРОБЛЕМЫ.

Выполнил: Гилев Александр, 11 «Д» класс, лицей ФГБОУ ВПО «Дальрыбвтуз»

Научный руководитель: Курносенко Марина Владимировна, преподаватель физики высшей квалификационной категории, лицей ФГБОУ ВПО «Дальрыбвтуз»

Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива.

На каком топливе работают ТЭС?!

  • Уголь: В среднем, сжигание одного килограмма этого вида топлива приводит к выделению 2,93 кг CO2 и позволяет получить 6,67 кВт·ч энергии или, при КПД 30 % - 2,0 кВт·ч электричества. Содержит 75-97% углерода,

1,5-5,7% водорода, 1,5-15% кислорода, 0,5-4% серы, до 1,5% азота, 2-45%

летучих веществ, количество влаги колеблется от 4 до 14%.В состав газообразных продуктов (коксового газа) входят бензол,

толуол, ксиолы, фенол, аммиак и другие вещества. Из коксового газа после

очистки от аммиака, сероводорода и цианистых соединений извлекают сырой

бензол, из которого выделяют отдельные углеводороды и ряд других ценных

веществ.

  • Мазут: Мазу́т (возможно, от арабского мазхулат - отбросы), жидкий продукт темно-коричневого цвета, остаток после выделения из нефти или продуктов ее вторичной переработки бензиновых, керосиновых и газойлевых фракций, выкипающих до 350-360°С. Мазут- это смесь углеводородов (с молекулярной массой от 400 до 1000 г/моль), нефтяных смол (с молекулярной массой 500-3000 и более г/моль), асфальтенов, карбенов, карбоидов и органических соединений, содержащих металлы (V, Ni, Fe, Mg, Na, Ca)
  • Газ: Основную часть природного газа составляет метан (CH4) - от 92 до 98 %. В состав природного газа могут также входить более тяжёлые углеводороды - гомологи метана.

Достоинства и недостатки ТЭС:

Достоинства ТЭС:

  • Самое главное преимущество- невысокая аварийность и выносливость оборудования.
  • Используемое топливо достаточно дёшево.
  • Требуют меньших капиталовложений по сравнению с другими электростанциями.
  • Могут быть построены в любом месте независимо от наличия топлива. Топливо может транспортироваться к месту расположения электростанции железнодорожным или автомобильным транспортом.
  • Использование природного газа в виде топлива практически уменьшает выбросы вредных веществ в атмосферу, что является огромным преимуществом перед АЭС.
  • Серьёзной проблемой для АЭС является их ликвидация после выработки ресурса, по оценкам она может составить до 20 % от стоимости их строительства.

Недостатки ТЭС:

  • Всё-таки ТЭС, которые используют в качестве топлива мазут, каменный уголь сильно загрязняют окружающую среду. На ТЭС суммарные годовые выбросы вредных веществ, в которые входят сернистый газ, оксиды азота, оксиды углерода, углеводороды, альдегиды и золовая пыль, на 1000 МВт установленной мощности составляют от примерно 13 000 тонн в год на газовых до 165 000 на пылеугольных ТЭС.
  • ТЭС мощностью 1000 МВт потребляет 8 миллионов тонн кислорода в год

Например : ТЭЦ-2 за сутки сжигает половину состава угля. Наверное этот недостаток является основным.

А что если?!

  • А что если на построенной в Приморье АЭС произойдёт авария?
  • Сколько лет планета будет восстанавливаться после этого?
  • Ведь ТЭЦ-2, которая постепенно переходит на газ, практически прекращает выбросы сажи, аммиака, азота, и прочих веществ в атмосферу!
  • На сегодняшний день выбросы ТЭЦ-2 уменьшились на 20%.
  • И конечно будет ликвидирована ещё одна проблема -золоотвал.

Немного о вредности АЭС:

  • Достаточно просто вспомнить аварию на Чернобыльской атомной электростанции 26 апреля 1986 года. Всего за 20 лет в этой группе от всех причин умерло примерно 5 тысяч ликвидаторов и это ещё не считая гражданских лиц… И конечно, это всё официальные данные.

Завод «МАЯК»:

  • 15.03.1953 - возникла самоподдерживающаяся цепная реакция. Переоблучен персонал завода;
  • 13.10.1955 - разрыв технологического оборудования и разрушение частей здания.
  • 21.04.1957 - СЦР (самопроизвольная цепная реакция) на заводе № 20 в сборнике оксалатных декантатов после фильтрации осадка оксалата обогащенного урана. Шесть человек получили дозы облучения от 300 до 1000 бэр (четыре женщины и два мужчины), одна женщина умерла.
  • 02.10.1958 г. - СЦР на заводе. Проводились опыты по определению критической массы обогащенного урана в цилиндрической емкости при различных концентрациях урана в растворе. Персонал нарушил правила и инструкции по работе с ЯДМ (ядерный делящийся материал). В момент СЦР персонал получил дозы облучения от 7600 до 13000 бэр. Три человека погибло, один человек получил лучевую болезнь и ослеп. В том же году И. В. Курчатов выступил на высшем уровне и доказал необходимость учреждения специального государственного подразделения по безопасности. Такой организацией стала ЛЯБ.
  • 28.07.1959 - разрыв технологического оборудования.
  • 05.12.1960 - СЦР на заводе. Пять человек были переоблучены.
  • 26.02.1962 - взрыв в сорбционной колонне, разрушение оборудования.
  • 07.09.1962 - СЦР.
  • 16.12.1965 г. - СЦР на заводе № 20 продолжалась 14 часов.
  • 10.12.1968 г. - СЦР. Раствор плутония был залит в цилиндрический контейнер с опасной геометрией. Один человек погиб, другой получил высокую дозу облучения и лучевую болезнь, после которой ему были ампутированы две ноги и правая рука.
  • 11.02.1976 на радиохимическом заводе в результате неквалифицированных действий персонала произошло развитие автокаталитической реакции концентрированной азотной кислоты с органической жидкостью сложного состава. Аппарат взорвался, произошло радиоактивное загрязнение помещений ремонтной зоны и прилегающего участка территории завода. Индекс по шкале INEC-3.
  • 02.10.1984 г. - взрыв на вакуумном оборудовании реактора.
  • 16.11.1990 - взрывная реакция в емкостях с реагентом. Два человека получили химические ожоги, один погиб.
  • 17.07.1993 г. - Авария на радиоизотопном заводе ПО «Маяк» с разрушением сорбционной колонны и выбросом в окружающую среду незначительного количества α-аэрозолей. Радиационный выброс был локализован в пределах производственных помещений цеха.
  • 2.08.1993 г. - Авария линии выдачи пульпы с установки по очистке жидких РАО произошел инцидент, связанный с разгерметизацией трубопровода и попаданием 2 м3 радиоактивной пульпы на поверхность земли (загрязнено около 100 м2 поверхности). Разгерметизация трубопровода привела к вытеканию на поверхность земли радиоактивной пульпы активностью около 0,3 Ки. Радиоактивный след был локализован, загрязненный грунт вывезен.
  • 27.12.1993 произошел инцидент на радиоизотопном заводе, где при замене фильтра произошел выброс в атмосферу радиоактивных аэрозолей. Выброс составлял по α-активности 0,033 Ки, по β-активности 0,36 мКи.
  • 4.02.1994 зафиксирован повышенный выброс радиоактивных аэрозолей: по β-активности 2-суточных уровней, по 137Cs суточных уровней, суммарная активность 15.7 мКи.
  • 30.03.1994 при переходе зафиксировано превышение суточного выброса по 137Cs в 3, β-активности - 1,7, α-активности - в 1,9 раза.
  • В мае 1994 по системе вентиляции здания завода произошел выброс активностью 10,4 мКи β-аэрозолей. Выброс по 137Cs составил 83 % от контрольного уровня.
  • 7.07.1994 на приборном заводе обнаружено радиоактивное пятно площадью несколько квадратных дециметров. Мощность экспозиционной дозы составила 500 мкР/с. Пятно образовалось в результате протечек из заглушенной канализации.
  • 31.08. 1994 зарегистрирован повышенный выброс радионуклидов в атмосферную трубу здания радиохимического завода (238,8 мКи, в том числе доля 137Cs составила 4,36 % годового предельно допустимого выброса этого радионуклида). Причиной выброса радионуклидов явилась разгерметизация ТВЭЛ ВВЭР-440 при проведении операции отрезки холостых концов ОТВС (отработавших тепловыделяющих сборок) в результате возникновения неконтролируемой электрической дуги.
  • 24.03.1995 зафиксировано превышение на 19 % нормы загрузки аппарата плутонием, что можно рассматривать как ядерно-опасный инцидент.
  • 15.09.1995 на печи остекловывания высокоактивных ЖРО (жидких радиоактивных отходов) была обнаружена течь охлаждающей воды. Эксплуатация печи в регламентном режиме была прекращена.
  • 21.12.1995 при разделке термометрического канала произошло облучение четырех работников (1,69, 0,59, 0,45, 0,34 бэр). Причина инцидента - нарушение работниками предприятия технологических регламентов.
  • 24.07.1995 произошел выброс аэрозолей 137Сs, величина которого составила 0,27 % годовой величины ПДВ для предприятия. Причина - возгорание фильтрующей ткани.
  • 14.09.1995 при замене чехлов и смазке шаговых манипуляторов зарегистрировано резкое повышение загрязнения воздуха α-нуклидами.
  • 22.10.96 произошла разгерметизация змеевика охлаждающей воды одной из емкостей-хранилищ высокоактивных отходов. В результате произошло загрязнение трубопроводов системы охлаждения хранилищ. В результате данного инцидента 10 работников отделения получили радиоактивное облучение от 2,23×10-3 до 4,8×10-2 Зв.
  • 20.11.96 на химико-металлургическом заводе при проведении работ на электрооборудовании вытяжного вентилятора произошел аэрозольный выброс радионуклидов в атмосферу, который составил 10 % от разрешенного годового выброса завода.
  • 27.08.97 г. в здании завода РТ-1 в одном из помещений было обнаружено загрязнение пола площадью от 1 до 2 м2 , мощность дозы гамма-излучения от пятна составляла от 40 до 200 мкР/с.
  • 06.10.97 зафиксировано повышение радиоактивного фона в монтажном здании завода РТ-1. Замер мощности экспозиционной дозы показал величину до 300 мкР/с.
  • 23.09.98 при подъеме мощности реактора ЛФ-2 («Людмила») после срабатывания автоматической защиты допустимый уровень мощности был превышен на 10 %. В результате в трех каналах произошла разгерметизация части твэлов, что привело к загрязнению оборудования и трубопроводов первого контура. Содержание 133Хе в выбросе из реактора в течение 10 дней превысило годовой допустимый уровень.
  • 09.09.2000 произошло отключение на ПО «Маяк» энергоснабжения на 1,5 часа, которое могло привести к возникновению аварии.
  • В ходе проверки в 2005 году прокуратура установила факт нарушения правил обращения с экологически опасными отходами производства в период 2001-2004 годов, что привело к сбросу в бассейн реки Теча нескольких десятков миллионов кубометров жидких радиоактивных отходов производства ПО «Маяк». По словам замначальника отдела Генпрокуратуры РФ в Уральском федеральном округе Андрея Потапова, «установлено, что заводская плотина, которая давно нуждается в реконструкции, пропускает в водоем жидкие радиоактивные отходы, что создает серьезную угрозу для окружающей среды не только в Челябинской области, но и в соседних регионах». По данным прокуратуры, из-за деятельности комбината «Маяк» в пойме реки Теча за эти четыре года уровень радионуклидов вырос в несколько раз. Как показала экспертиза, территория заражения составила 200 километров. В опасной зоне проживают около 12 тыс. человек. При этом следователи заявляли, что на них оказывается давление в связи с расследованием. Генеральному директору ПО «Маяк» Виталию Садовникову было предъявлено обвинения по статье 246 УК РФ «Нарушение правил охраны окружающей среды при производстве работ» и частям 1 и 2 статьи 247 УК РФ «Нарушение правил обращения экологически опасных веществ и отходов». В 2006 году уголовное дело в отношении Садовникова было прекращено в связи с амнистией к 100-летию Госдумы.
  • Теча - река загрязнённая радиоактивными отходами сбрасываемыми Химкомбинатом «Маяк», находящийся на территории Челябинской области. На берегах реки радиоактивный фон превышен многократно. С 1946 по 1956 год сбросы средне- и высокоактивных жидких отходов ПО «Маяк» производили в открытую речную систему Теча-Исеть-Тобол в 6 км от истока реки Течи. Всего за эти годы было сброшено 76 млн м3 сточных вод с общей активностью по β-излучениям свыше 2,75 млн Ки. Жители прибрежных сел подверглись как внешнему облучению, так и внутреннему. Всего радиационному воздействию подверглись 124 тыс. человек, проживающих в населенных пунктах на берегах рек этой водной системы. Наибольшему облучению подверглись жители побережья реки Течи (28,1 тыс. человек). Около 7,5 тыс. человек, переселенных из 20 населенных пунктов, получили средние эффективные эквивалентные дозы в диапазоне 3 - 170 сЗв. В последующем в верхней части реки был построен каскад водоемов. Большая часть (по активности) жидких радиоактивных отходов сбрасывалась в оз. Карачай (водоём 9) и «Старое болото». Пойма реки и донные отложения загрязнены, иловые отложения в верхней части реки рассматриваются как твёрдые радиоактивные отходы. Подземные воды в районе оз. Карачай и Теченского каскада водоёмов загрязнены.
  • Авария на «Маяке» в 1957 году, именуемая также «Кыштымской трагедией», является третьей по масштабам катастрофой в истории ядерной энергетики после Чернобыльской аварии и Аварии на АЭС Фукусима I (по шкале INES).
  • Вопрос радиоактивного загрязнения Челябинской области поднимался неоднократно, но из-за стратегической важности химкомбината каждый раз оставался без внимания.

ФУКУСИМА-1

  • Авария на АЭС Фукусима-1 - крупная радиационная авария (по заявлению японских официальных лиц - 7-го уровня по шкале INES), произошедшая 11 марта 2011 года в результате сильнейшего землетрясения в Японии и последовавшего за ним цунами

Электрической станцией называется комплекс оборудования, предназначенного для преобразования энергии какого-либо природного источника в электричество или тепло. Разновидностей подобных объектов существует несколько. К примеру, часто для получения электричества и тепла используются ТЭС.

Определение

ТЭС — это э лектростанция, применяющая в качестве источника энергии какое-либо органическое топливо. В качестве последнего может использоваться, к примеру, нефть, газ, уголь. На настоящий момент тепловые комплексы являются самым распространенным видом электростанций в мире. Объясняется популярность ТЭС прежде всего доступностью органического топлива. Нефть, газ и уголь имеются во многих уголках планеты.

ТЭС — это (расшифровка с амой аббревиатуры выглядит как "тепловая электростанция"), помимо всего прочего, комплекс с довольно-таки высоким КПД. В зависимости от вида используемых турбин этот показатель на станциях подобного типа может быть равен 30 - 70%.

Какие существуют разновидности ТЭС

Классифицироваться станции этого типа могут по двум основным признакам:

  • назначению;
  • типу установок.

В первом случае различают ГРЭС и ТЭЦ. ГРЭС — это станция, работающая за счет вращения турбины под мощным напором струи пара. Расшифровка аббревиатуры ГРЭС — государственная районная электростанция — в настоящий момент утратила актуальность. Поэтому часто такие комплексы называют также КЭС. Данная аббревиатура расшифровывается как "конденсационная электростанция".

ТЭЦ — это также довольно-таки распространенный вид ТЭС. В отличие от ГРЭС, такие станции оснащаются не конденсационными, а теплофикационными турбинами. Расшифровывается ТЭЦ как "теплоэнергоцентраль".

Помимо конденсационных и теплофикационных установок (паротурбинных), на ТЭС могут использоваться следующие типы оборудования:

  • парогазовые.

ТЭС и ТЭЦ: различия

Часто люди путают эти два понятия. ТЭЦ, по сути, как мы выяснили, является одной из разновидностей ТЭС. Отличается такая станция от других типов ТЭС прежде всего тем, что часть вырабатываемой ею тепловой энергии идет на бойлеры, установленные в помещениях для их обогрева или же для получения горячей воды.

Также люди часто путают названия ГЭС и ГРЭС. Связано это прежде всего со сходством аббревиатур. Однако ГЭС принципиально отличается от ГРЭС. Оба этих вида станций возводятся на реках. Однако на ГЭС, в отличие от ГРЭС, в качестве источника энергии используется не пар, а непосредственно сам водяной поток.

Какие предъявляются требования к ТЭС

ТЭС — это тепловая электрическая станция, на которой выработка электроэнергии и ее потребление производятся одномоментно. Поэтому такой комплекс должен полностью соответствовать ряду экономических и технологических требований. Это обеспечит бесперебойное и надежное обеспечение потребителей электроэнергией. Так:

  • помещения ТЭС должны иметь хорошее освещение, вентиляцию и аэрацию;
  • должна быть обеспечена защита воздуха внутри станции и вокруг нее от загрязнения твердыми частицами, азотом, оксидом серы и т. д.;
  • источники водоснабжения следует тщательно защищать от попадания в них сточных вод ;
  • системы водоподготовки на станциях следует обустраивать безотходные.

Принцип работы ТЭС

ТЭС — это электростанция , на которой могут использоваться турбины разного типа. Далее рассмотрим принцип работы ТЭС на примере одного из самых распространенных ее типов — ТЭЦ. Осуществляется выработка энергии на таких станциях в несколько этапов:

    Топливо и окислитель поступают в котел. В качестве первого в России обычно используется угольная пыль. Иногда топливом ТЭЦ могут служить также торф, мазут, уголь, горючие сланцы, газ. Окислителем в данном случае выступает подогретый воздух.

    Образовавшийся в результате сжигания топлива в котле пар поступает в турбину. Назначением последней является преобразование энергии пара в механическую.

    Вращающиеся валы турбины передают энергию на валы генератора, преобразующего ее в электрическую.

    Охлажденный и потерявший часть энергии в турбине пар поступает в конденсатор. Здесь он превращается в воду, которая подается через подогреватели в деаэратор.

    Деаэ рированная вода подогревается и подается в котел.

    Преимущества ТЭС

    ТЭС — это, таким образом, станция, основным типом оборудования на которой являются турбины и генераторы. К плюсам таких комплексов относят в первую очередь:

  • дешевизну возведения в сравнении с большинством других видов электростанций;
  • дешевизну используемого топлива;
  • невысокую стоимость выработки электроэнергии.

Также большим плюсом таких станций считается то, что построены они могут быть в любом нужном месте, вне зависимости от наличия топлива. Уголь, мазут и т. д. могут транспортироваться на станцию автомобильным или железнодорожным транспортом.

Еще одним преимуществом ТЭС является то, что они занимают очень малую площадь в сравнении с другими типами станций.

Недостатки ТЭС

Разумеется, есть у таких станций не только преимущества. Имеется у них и ряд недостатков. ТЭС — это комплексы, к сожалению, очень сильно загрязняющие окружающую среду. Станции этого типа могут выбрасывать в воздух просто огромное количество копоти и дыма. Также к минусам ТЭС относят высокие в сравнении с ГЭС эксплуатационные расходы. К тому же все виды используемого на таких станциях топлива относятся к невосполнимым природным ресурсам.

Какие еще виды ТЭС существуют

Помимо паротурбинных ТЭЦ и КЭС (ГРЭС), на территории России работают станции:

    Газотурбинные (ГТЭС). В данном случае турбины вращаются не от пара, а на природном газу. Также в качестве топлива на таких станциях могут использоваться мазут или солярка. КПД таких станций, к сожалению, не слишком высок (27 - 29%). Поэтому используют их в основном только как резервные источники электроэнергии или же предназначенные для подачи напряжения в сеть небольших населенных пунктов.

    Парогазотурбинные (ПГЭС). КПД таких комбинированных станций составляет примерно 41 - 44%. Передают энергию на генератор в системах этого типа одновременно турбины и газовые, и паровые. Как и ТЭЦ, ПГЭС могут использоваться не только для собственно выработки электроэнергии, но и для отопления зданий или же обеспечения потребителей горячей водой.

Примеры станций

Итак, достаточно производительным и в какой-то мере даже универсальным объектом может считаться любая ТЭС, электростанция. Примеры таких комплексов представляем в списке ниже.

    Белгородская ТЭЦ. Мощность этой станции составляет 60 МВт. Турбины ее работают на природном газе.

    Мичуринская ТЭЦ (60 МВт). Этот объект также расположен в Белгородской области и работает на природном газе.

    Череповецкая ГРЭС. Комплекс находится в Волгоградской области и может работать как на газу, так и на угле. Мощность этой станции равна целых 1051 МВт.

    Липецкая ТЭЦ -2 (515 МВТ). Работает на природном газе.

    ТЭЦ-26 «Мосэнерго» (1800 МВт).

    Черепетская ГРЭС (1735 Мвт). Источником топлива для турбин этого комплекса служит уголь.

Вместо заключения

Таким образом, мы выяснили, что представляют собой тепловые электростанции и какие существуют разновидности подобных объектов. Впервые комплекс этого типа был построен очень давно — в 1882 году в Нью-Йорке. Через год такая система заработала в России — в Санкт-Петербурге. Сегодня ТЭС — это разновидность электростанций, на долю которых приходится порядка 75% всей вырабатываемой в мире электроэнергии. И по всей видимости, несмотря на ряд минусов, станции этого типа еще долго будут обеспечивать население электроэнергией и теплом. Ведь достоинств у таких комплексов на порядок больше, чем недостатков.