Сообщение на тему механическая работа. Определение механической работы

Механическая работа это энергетическая характеристика движения физических тел, имеющая скалярный вид. Она равна модулю силы действующей на тело, умноженной на модуль перемещения вызванного этой силой и на косинус угла между ними.

Формула 1 - Механическая работа.


F - Сила, действующая на тело.

s - Перемещение тела.

cosa - Косинус угла между силой и перемещением.

Данная формула имеет общий вид. В случае если угол между прикладываемой силой и перемещением равен нулю, то косинус равен 1. Соответственно работа будет равна только произведению силы на перемещение. Проще говоря, если тело движется в направлении приложения силы, то механическая работа равна произведению силы на перемещение.

Второй частный случай, когда угол между силой, действующей на тело и его перемещением равен 90 градусов. В этом случае косинус 90 градусов равен нулю, соответственно работа будет равна нулю. И действительно, что происходит мы, прикладываем силу в одном направлении, а тело движется перпендикулярно ему. То есть тело движется явно не под действием нашей силы. Таким образом, работа нашей силы по перемещению тела равна нулю.

Рисунок 1 - Работа сил при перемещении тела.


В случае если на тело действует больше одной силы, то рассчитывают суммарную силу, действующую на тело. И далее ее подставляют в формулу как единственную силу. Тело под действием силы может перемещаться не только прямолинейно, но и по произвольной траектории. В этом случае работа вычисляется для малого участка перемещения, который можно считать прямолинейным и далее суммируется по всему пути.

Работа может быть как положительной, так и отрицательной. То есть если перемещение и сила совпадают по направлению, то работа положительна. А если сила приложена в одном направлении, а тело перемещается в другом, то работа будет отрицательна. Примером отрицательной работы может служить работа силы трения. Так как сила трения направлена встречно движению. Представьте себе, тело движется по плоскости. Сила, приложенная к телу, толкает его в определенном направлении. Эта сила совершает положительную работу по перемещению тела. Но при этом сила трения совершает отрицательную работу. Она тормозит перемещение тела и направлена навстречу его движению.

Рисунок 2 - Сила движения и трения.


Работа в механике измеряется в Джоулях. Один Джоуль это работа совершаемая силой в один Ньютон при перемещении тела на один метр. Кроме направления движения тела может меняться и величина прилагаемой силы. К примеру, при сжатии пружины, сила прилагаемой к ней будет увеличиваться пропорционально пройденному расстоянию. В этом случае работу вычисляют по формуле.

Формула 2 - Работа сжатия пружины.


k - жесткость пружины.

x - координата перемещения.

Чтобы иметь возможность охарактеризовать энергетические характеристики движения, было введено понятие механической работы. И именно ей в её разных проявлениях посвящена статья. Для понимания тема одновременно и лёгкая, и довольно сложная. Автор искренне старался сделать её более понятной и доступной для понимания, и остаётся только надеяться, что цель достигнута.

Что называют механической работой?

Что же так называют? Если над телом работает какая-то сила, и в результате действия оной тело перемещается, то это и называется механической работой. При подходе с точки зрения научной философии здесь можно выделить несколько дополнительных аспектов, но в статье будет тема раскрыта с точки зрения физики. Механическая работа - это не сложно, если хорошо вдуматься в написанные здесь слова. Но слово "механическая" обычно не пишется, и всё сокращается до слова «работа». Но не каждая работа является механической. Вот сидит человек и думает. Работает ли он? Мысленно да! Но механическая ли это работа? Нет. А если человек идёт? Если тело перемещается под действием силы, то это механическая работа. Всё просто. Иными словами, сила, действующая на тело, совершает (механическую) работу. И ещё: именно работой можно охарактеризовать результат действия определённой силы. Так ечли человек идёт, то определённые силы (трения, тяжести и т.д.) совершают над человеком механическую работу, и в результате их действия человек меняет точку своего нахождения, другими словами перемещается.

Работа как физическая величина равняется силе, что действует на тело, множимой на путь, который совершило тело под влиянием этой силы и в направлении, указываемом ею. Можно сказать, что механическая работа была сделана, если одновременно было соблюдено 2 условия: сила действовала на тело, и оно переместилось в направление её действия. Но она не совершалась или не совершается, если сила действовала, а тело не поменяло свое местонахождение в системе координат. Вот небольшие примеры, когда механическая работа не совершается:

  1. Так человек может навалиться на огромный валун с целью сдвинуть его, но сил не хватает. Сила действует на камень, а он не перемещается, и работа не происходит.
  2. Тело движется в системе координат, а сила равняется нулю или они все компенсировались. Такое можно наблюдать во время движения по инерции.
  3. Когда направление, в котором двигается тело, перпендикулярно действию силы. Когда поезд двигается по горизонтальной линии, то сила тяжести свою работу не совершает.

Зависимо от определённых условий механическая работа бывает отрицательной и положительной. Так, если направления и силы, и движения тела одинаковы, то происходит положительная работа. Примером положительной работы является действие силы тяжести на падающую каплю воды. Но если сила и направление движения противоположны, то значит происходит отрицательная механическая работа. Примером уже такого варианта является поднимающийся вверх воздушный шарик и сила тяжести, которая совершает отрицательную работу. Когда тело поддаётся влиянию нескольких сил, такая работа называется "работой результирующей силы".

Особенности практического применения (кинетическая энергия)

Переходим от теории к практической части. Отдельно следует поговорить о механической работе и её использовании в физике. Как многие наверняка вспомнили, вся энергия тела делится на кинетическую и потенциальную. Когда объект находится в положении равновесия и никуда не движется, его потенциальная энергия равняется общей энергии, а кинетическая равняется нулю. Когда начинается движение, потенциальная энергия начинает уменьшаться, кинетическая расти, но в сумме они равняются общей энергии объекта. Для материальной точки кинетическую энергию определяют как работу силы, которая ускорила точку от нуля до значения Н, а в формульном виде кинетика тела равна ½*М*Н, где М - масса. Чтобы узнать кинетическую энергию объекта, который состоит из множества частиц, необходимо найти сумму всей кинетической энергии частиц, и это будет кинетическая энергия тела.

Особенности практического применения (потенциальная энергия)

В случае, когда все действующие на тело силы консервативны, и потенциальная энергия равняется общей, то работа не совершается. Этот постулат известен как закон сохранения механической энергии. Механическая энергия в замкнутой системе является постоянной во временном интервале. Закон сохранения широко используют для решения задач из классической механики.

Особенности практического применения (термодинамика)

В термодинамике работа, которую совершает газ при расширении, рассчитывают по интегралу умножения давления на объем. Такой подход применим не только в тех случаях, когда есть точная функция объема, но и ко всем процессам, что могут быть отображены в плоскости давление/объем. Также применяется знание о механической работе не только к газам, но и ко всему, что может оказать давление.

Особенности практического применения на практике (теоретическая механика)

В теоретической механике все вышеописанные свойства и формулы рассматриваются более детально, в частности это проекции. Она даёт и свое определение для различных формул механической работы (пример определения для интеграла Риммера): предел, до которого стремится сумма всех сил элементарных работ, когда мелкость разбиения стремится к нулевому значению, называется работой силы вдоль кривой. Наверное, сложно? Но ничего, с теоретической механикой всё. Да уже и вся механическая работа, физика и другие сложности закончились. Дальше будут только примеры и заключение.

Единицы измерения механической работы

Для измерения работы в СИ используются джоули, а СГС использует эрг:

  1. 1 Дж = 1 кг·м²/с² = 1 Н·м
  2. 1 эрг = 1 г·см²/с² = 1 дин·см
  3. 1 эрг = 10 −7 Дж

Примеры механической работы

Для того чтобы разобраться окончательно с таким понятием как механическая работа, следует изучить несколько отдельных примеров, которые позволят рассмотреть её с множества, но далеко не всех сторон:

  1. Когда человек поднимает руками камень, то происходит механическая работа с помощью мускульной силы рук;
  2. Когда по рельсам едет поезд, его тянет сила тяги тягача (электровоза, тепловоза и т.д.);
  3. Если взять ружье и выстрелить из него, то благодаря силе давления, которую создадут пороховые газы, будет сделана работа: пуля перемещена вдоль ствола ружья одновременно с увеличением скорости самой пули;
  4. Механическая работа есть и тогда, когда сила трения действует на тело, заставляя его уменьшить скорость своего движения;
  5. Вышеописанный пример с шарами, когда они поднимаются в противоположную сторону относительно направления силы тяжести, тоже является примером механической работы, но кроме силы тяжести действует ещё и сила Архимеда, когда вверх поднимается всё, что легче воздуха.

Что такое мощность?

Напоследок хочется затронуть тему мощности. Работу силы, которая совершается в одну единицу времени, и называют мощностью. По сути мощность - это такая физическая величина, которая является отображением отношения работы к определённому промежутку времени, во время которого эта работа и совершалась: М=Р/В, где М - мощность, Р - работа, В - время. Единицу мощности в СИ обозначают в 1 Вт. Ватт равняется мощности, которая совершает работу в один джоуль за одну секунду: 1 Вт=1Дж\1с.

Практически все, не задумываясь, ответят: во втором. И будут неправы. Дело обстоит как раз наоборот. В физике механическая работа описывается следующими определениями: механическая работа совершается тогда, когда на тело действует сила, и оно движется. Механическая работа прямо пропорциональна приложенной силе и пройденному пути.

Формула механической работы

Определяется механическая работа формулой:

где A – работа, F – сила, s – пройденный путь.

ПОТЕНЦИА́Л (потенциальная функция), понятие, характеризующее широкий класс физических силовыхполей (электрических, гравитационных и т. п.) и вообще поля физических величин, представляемыхвекторами (поле скоростей жидкости и т. п.). В общем случае потенциал векторного поля a(x ,y ,z ) - такаяскалярная функция u (x ,y ,z ), что a=grad

35. Проводники в электрическом поле. Электроемкость. Проводники в электрическом поле. Проводники - это вещества, характеризующиеся наличием в них боль­шого количества свободных носителей зарядов, способ­ных перемещаться под действием электрического поля. К проводникам относятся металлы, электролиты, уголь. В металлах носителями свободных зарядов являются электроны внешних оболочек атомов, которые при взаи­модействии атомов полностью утрачивают связи со «своими» атомами и становятся собственностью всего проводника в целом. Свободные электроны участвуют в тепловом движении подобно молекулам газа и могут перемещаться по металлу в любом направлении. Электри́ческая ёмкость - характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками

36. Емкость плоского конденсатора.

Емкость плоского конденсатора.

Т.о. емкость плоского конденсатора зависит только от его размеров, формы и диэлектрической проницаемости. Для создания конденсатора большой емкости необходимо увеличить площадь пластин и уменьшить толщину слоя диэлектрика.

37. Магнитное взаимодействие токов в вакууме. Закон Ампера. Закон Ампера. В 1820 году Ампер (французский ученый (1775-1836)) установил экспериментально закон, по которому можно рассчитать силу, действующую на элемент проводника длины с током .

где – вектор магнитной индукции,– вектор элемента длины проводника, проведенного в направлении тока.

Модуль силы , где– угол между направлением тока в проводнике и направлением индукции магнитного поля.Для прямолинейного проводника длиной с токомв однородном поле

Направление действующей силы может быть определено с помощью правила левой руки :

Если ладонь левой руки расположить так, чтобы нормальная (к току) составляющая магнитного поля входила в ладонь, а четыре вытянутых пальца направлены вдоль тока, то большой палец укажет направление, в котором действует сила Ампера.

38.Напряженность магнитного поля. Закон Био-Савара-Лапласа Напряжённость магни́тного по́ля (стандартное обозначение Н ) - векторная физическая величина , равная разности вектора магнитной индукции B и вектора намагниченности J .

В Международной системе единиц (СИ) : где-магнитная постоянная .

Закон БСЛ. Закон, определяющий магнитное поле отдельного элемента тока

39. Приложения закона Био-Савара-Лапласа. Для поля прямого тока

Для кругового витка.

И для соленоида

40. Индукция магнитного поля Магнитное поле характеризуется векторной величиной, которая носит название индукции магнитного поля (векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства). МИ. (В) это не сила, действующая на проводники, это величина, которая находится через данную силу по следующей формуле: B=F / (I*l) (Словестно: Модуль вектора МИ. (B) равен отношению модуля силы F, с которой магнитное поле действует на расположенный перпендикулярно магнитным линиям проводник с током, к силе тока в проводнике I и длине проводника l . Магнитная индукция зависит только от магнитного поля. В связи с этим индукцию можно считать количественной характеристикой магнитного поля. Она определяет, с какой силой(Сила Лоренца) магнитное поле действует назаряд, движущийся со скоростью. Измеряется МИ в теслах (1 Тл). При этом 1 Тл=1 Н/(А*м) . МИ имеет направление. Графически ее можно зарисовывать в виде линий. В однородном магнитном полелинии МИ параллельны, и вектор МИ будет направлен так же во всех точках. В случае неоднородного магнитного поля, например, поля вокруг проводника с током, вектор магнитной индукции будет меняться в каждой точке пространства вокруг проводника, а касательные к этому вектору создадут концентрические окружности вокруг проводника.

41. Движение частицы в магнитном поле. Сила Лоренца. а) - Если частица влетает в область однородного магнитного поля, причем вектор V перпендикулярен вектору B, то она движется по окружности радиуса R=mV/qB, поскольку сила Лоренца Fл=mV^2/R играет роль центростремительной силы. Период обращения равен T=2пиR/V=2пиm/qB и он не зависит от скорости частицы (Это справедливо только при V<<скорости света) - Если угол между векторами V и B не равен 0 и 90 градусов, то частица в однородном магнитном поле движется по винтовой линии. - Если вектор V параллелен B, то частица движется по прямой линии (Fл=0). б) Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца.

Сила Л. определяется соотношением: Fл = q·V·B·sina (q - величина движущегося заряда; V - модуль его скорости; B - модуль вектора индукции магнитного поля; aльфа - угол между вектором V и вектором В) Сила Лоренца перпендикулярна скорости и поэтому она не совершает работы, не изменяет модуль скорости заряда и его кинетической энергии. Но направление скорости изменяется непрерывно. Сила Лоренца перпендикулярна векторам В и v , и её направление определяется с помощью того же правила левой руки, что и направление силы Ампера: если левую руку расположить так, чтобы составляющая магнитной индукции В, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца F л.

В нашем повседневном опыте слово «работа» встречается очень часто. Но следует различать работу физиологическую и работу с точки зрения науки физики. Когда вы приходите с уроков, вы говорите: «Ой, как я устал!». Это работа физиологическая. Или, к примеру, работа коллектива в народной сказке «Репка».

Рис 1. Работа в повседневном смысле слова

Мы же будем говорить здесь о работе с точки зрения физики.

Механическая работа совершается, если под действием силы происходит перемещение тела. Работа обозначается латинской буквой А. Более строго определение работы звучит так.

Работой силы называется физическая величина, равная произведению величины силы на расстояние, пройденное телом в направлении действия силы.

Рис 2. Работа - это физическая величина

Формула справедлива, когда на тело действует постоянная сила.

В международной системе единиц СИ работа измеряется в джоулях.

Это означает, что если под действием силы в 1 ньютон тело переместилось на 1 метр, то данной силой совершена работа 1 джоуль.

Единица работы названа в честь английского ученого Джеймса Прескотта Джоуля.

Рис 3. Джеймс Прескотт Джоуль (1818 - 1889)

Из формулы для вычисления работы следует, что возможны три случая, когда работа равна нулю.

Первый случай - когда на тело действует сила, но тело не перемещается. Например, на дом действует огромная сила тяжести. Но она не совершает работы, поскольку дом неподвижен.

Второй случай - когда тело перемещается по инерции, то есть на него не действуют никакие силы. Например, космический корабль движется в межгалактическом пространстве.

Третий случай - когда на тело действует сила, перпендикулярная направлению движения тела. В этом случае, хотя и тело перемещается, и сила на него действует, но нет перемещения тела в направлении действия силы .

Рис 4. Три случая, когда работа равна нулю

Следует также сказать, что работа силы может быть отрицательной. Так будет, если перемещение тела происходит против направления действия силы . Например, когда подъемный кран с помощью троса поднимает груз над землей, работа силы тяжести отрицательна (а работа силы упругости троса, направленная вверх, наоборот, положительна).

Предположим, при выполнении строительных работ котлован необходимо засыпать песком. Экскаватору для этого понадобится несколько минут, а рабочему с помощью лопаты пришлось бы трудиться несколько часов. Но и экскаватор, и рабочий при этом выполнили бы одну и ту же работу .

Рис 5. Одну и ту же работу можно выполнить за разное время

Чтобы охарактеризовать быстроту выполнения работы в физике используется величина, называемая мощностью.

Мощностью называется физическая величина, равная отношению работы ко времени ее выполнения.

Мощность обозначается латинской буквой N .

Единицей измерения мощности я системе СИ является ватт.

Один ватт - это мощность, при которой работа в один джоуль совершается за одну секунду.

Единица мощности названа в честь английского ученого, изобретателя паровой машины Джеймса Уатта.

Рис 6. Джеймс Уатт (1736 - 1819)

Объединим формулу для вычисления работы с формулой для вычисления мощности.

Вспомним теперь, что отношение пути, пройденного телом, S , ко времени движения t представляет собой скорость движения тела v .

Таким образом, мощность равна произведению численного значения силы на скорость движения тела в направлении действия силы .

Этой формулой удобно пользоваться при решении задач, в которых сила действует на тело, движущееся с известной скоростью.

Список литературы

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. - 17-е изд. - М.: Просвещение, 2004.
  2. Перышкин А.В. Физика. 7 кл. - 14-е изд., стереотип. - М.: Дрофа, 2010.
  3. Перышкин А.В. Сборник задач по физике, 7-9 кл.: 5-е изд., стереотип. - М: Издательство «Экзамен», 2010.
  1. Интернет-портал Physics.ru ().
  2. Интернет-портал Festival.1september.ru ().
  3. Интернет-портал Fizportal.ru ().
  4. Интернет-портал Elkin52.narod.ru ().

Домашнее задание

  1. В каких случаях работа равна нулю?
  2. Как находится работа на пути, пройденном в направлении действия силы? В противоположном направлении?
  3. Какую работу совершает сила трения, действующая на кирпич, при его перемещении на 0,4 м? Сила трения равна 5 Н.

Каждое тело, совершающее движение, можно охарактеризовать работой. Иными словами, она характеризует действие сил.

Работа определяется как:
Произведение модуля силы и пути пройденного телом, умноженное на косинус угла между направлением силы и движения.

Работа измеряется в Джоулях:
1 [Дж] = = [кг* м2/c2]

К примеру, тело A под действием силы в 5 Н, прошло 10 м. Определить работу совершенную телом.

Так как направление движения и действия силы совпадают, то угол между вектором силы и вектором перемещения будет равен 0°. Формула упроститься, потому что косинус угла в 0° равен 1.

Подставляя исходные параметры в формулу, находим:
A= 15 Дж.

Рассмотрим другой пример, тело массой 2 кг, двигаясь с ускорением 6 м/ с2, прошло 10 м. Определить работу проделанную телом, если оно двигалось по наклоненной плоскости вверх под углом 60°.

Для начала, вычислим какую силу нужно приложить, что бы сообщить телу ускорение 6 м/ с2.

F = 2 кг * 6 м/ с2 = 12 H.
Под действием силы 12H, тело прошло 10 м. Работу можно вычислить по уже известной формуле:

Где, а равно 30°. Подставляя исходные данные в формулу получаем:
A= 103, 2 Дж.

Мощность

Множество машин механизмов выполняют одну и ту же работу за различный промежуток времени. Для их сравнения вводится понятие мощности.
Мощность – это величина, показывающая объем работы выполненный за единицу времени.

Мощность измеряется в Ватт, в честь Шотландского инженера Джеймса Ватта.
1 [Ватт] = 1 [Дж/c].

К примеру, большой кран поднял груз весом 10 т на высоту 30 м за 1 мин. Маленький кран на эту же высоту за 1 мин поднял 2 т кирпича. Сравнить мощности кранов.
Определим работу выполняемую кранами. Груз поднимается на 30м, при этом преодолевая силу тяжести, поэтому сила, затрачиваемая на поднятие груза, будет равна силе взаимодействия Земли и груза(F = m * g). А работа – произведению сил на расстояние пройденное грузами, то есть на высоту.

Для большого крана A1 = 10 000 кг * 30 м * 10 м / с2 = 3 000 000 Дж, а для маленького A2 = 2 000 кг * 30 м * 10 м / с2 = 600 000 Дж.
Мощность можно вычислить, разделив работу на время. Оба крана подняли груз за 1 мин (60 сек).

Отсюда:
N1 = 3 000 000 Дж/60 c = 50 000 Вт = 50 кВт.
N2 = 600 000 Дж/ 60 c = 10 000 Вт = 10 к Вт.
Из выше приведенных данных наглядно видно, что первый кран в 5 раз мощнее второго.