Современные методики гигиенических исследований. Методы гигиенического исследования

Занятие 1

ТЕМА: Предмет, содержание гигиены. Связь гигиены с другими науками. Значение гигиенических мероприятий в деятельности врача стоматолога. Физические свойства воздуха и их значение для организма (температура, влажность, барометрическое давление, подвижность воздуха). Методы оценки температурного режима помещения, влажности, подвижности воздуха

Методы оценки температурного режима помещений, барометрического давления, влажности и подвижности воздуха

Температура, влажность, подвижность, барометрическое давление воздуха являются основными метеорологическими элементами, характеризующими в совокупности физические свойства воздушной среды - микроклимат в жилых, детских, лечебных и других помещениях.

Термин микроклимат закрытого помещения - собирательное понятие, характеризующее физическое состояние воздушной среды какого-то помещения. Составными элементами микроклимата являются: температура воздуха и ее колебания во времени и в пространстве; влажность воздуха; его подвижность. Кроме того, при установлении особенностей и нормировании микроклимата закрытых помещений учитывается температура поверхностей ограждающих конструкций (стен, окон) и перепад температур воздуха в помещении и внутренних поверхностей ограждающих конструкции. Все эти составные факторы микроклимата оказывают интегральное влияние на тепловой обмен организма с окружающей средой. Микроклимат любого помещения, особенно больничной палаты, должен быть оптимальным. Под оптимальными понимаются такие микроклиматические условия, при которых механизмы терморегуляции организма (в лечебном учреждении организма больного) наименее напряжены, то есть тепловой комфорт обеспечивается наиболее физиологично, без всяких функциональных перегрузок.

Компенсаторные возможности больного организма ограничены, а чувствительность к неблагоприятным факторам внешней среды повышена. Следовательно, диапазон колебаний метеофакторов в больнице должен быть меньше, чем в любом помещении, предназначенном для здоровых людей. Кроме того, к поддержанию оптимального микроклимата в больнице предъявляются более строгие тpeбования, поскольку вследствие отклонения oт него напрягаются механизмы терморегуляции организма. Если для здорового человека такое напряжение (только не перенапряжение) допустимо, хотя и не желательно, то для больного в условиях стационара всякие напряжения безусловно вредны и их необходимо исключить вследствие ограниченных возможностей компенсаторных систем больного, его растренированности и повышенной чувствительности.

Микроклиматические условия в лечебно-профилактических учреждениях имеют важное значение в общем комплексе лечебных мероприятий. Для правильной оценки микроклиматических условий в лечебно-профилактических учреждениях врачу необходимо освоить устройство приборов, методические подходы исследования физических свойств воздушной среды и умение давать им обоснованную гигиеническую оценку.

теоретические контрольные вопросы

Предмет и задачи гигиены. Значение знания гигиены для врача стоматологического профиля. Методы исследования, применяемые в гигиене. Гигиена и санитария.

  • 1. Значение гигиенических мероприятий в деятельности среднего медицинского персонала.
  • 2. Физиолого-гигиеническое значение температуры воздуха.
  • 3. Теплообмен человека с окружающей средой.
  • 4. Особенности неблагоприятного воздействия высоких, низких температур и их профилактика.
  • 5. Физиолого-гигиеническое значение атмосферного давления и единицы его измерения.
  • 6. Влияние на организм пониженного атмосферного давления и меры профилактики.
  • 7. Влияние на организм повышенного атмосферного давления и меры профилактики.
  • 8. Физиолого-гигиеническое значение влажности воздуха.
  • 9. Показатели, применяемые для характеристики влажности воздуха, единицы измерения.
  • 10. Физиолого-гигиеническое значение подвижности воздуха.
  • 11. Что такое "роза ветров", "роза влияния", каково их гигиеническое значение?
  • 12. Профилактика неблагоприятного воздействия на человека больших и малых скоростей движения воздуха.
  • 13. Погода, определение и факторы её характеризующие. Влияние погоды на организм человека.
  • 14. Метеотропные реакции и заболевания, их профилактика. Клиническая классификация погод, её характеристика и использование в работе врачей.
  • 15. Понятие о климате и климатообразующих факторах, их физиолого-гигиеническое значение.
  • 16. Проблема акклиматизации на современном этапе. Пути её решения.
  • 17. Основные принципы закаливания организма. Способы и методы закаливания.

Практические контрольные вопросы

  • 1. Требования к температурному режиму (допустимые его колебания в течение суток при центральном и местном отоплении, колебания по вертикали и горизонтали) в жилых, общественных зданиях и больничных помещениях. Нормы оптимальных температур в больничных помещениях различного назначения.
  • 2. Приборы, используемые для определения температуры воздуха, радиационной температуры, принципы их устройства и правила работы. Методы измерения температуры воздуха.
  • 3. Отличительные особенности устройства и принцип работы максимального и минимального термометров.
  • 4. Приборы для измерения атмосферного давления, их устройство и правила работы.
  • 5. Гигиенические нормативы влажности в помещениях и мероприятия, направленные на улучшение температурно-влажностного режима помещений.
  • 6. Приборы, используемые для определения влажности воздуха, их устройство, принцип действия и правила работы.
  • 7. Гигиенические нормы подвижности воздуха в жилых помещениях и больничной палате. Какими способами определяют направление воздушных течений в открытой атмосфере и в помещении?
  • 8. Какими приборами определяют подвижность воздуха в открытой атмосфере и в помещении, их устройство и правила работы?

Цель занятия

Уяснить значение гигиены в практической деятельности врача стоматологического профиля. Изучить влияния физических свойств воздуха на организм человека с освоением методов их исследования и последующей гигиенической оценкой для разработки предложений по их оптимизации в лечебно-профилактических учреждениях.

ОБЪЕМ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

  • 1. Провести исследование температурного режима в заданном преподавателем помещении.
  • 2. Измерить барометрическое давление барометром-анероидом.
  • 3. С помощью станционного и аспирационного психрометров определить показатели влажности воздуха в учебной комнате и других помещениях, указанных преподавателем.
  • 4. В указанном преподавателем помещении определить и оценить охлаждающую способность воздуха с помощью кататермометра
  • 5. Оформить протокол по результатам выполненных исследований.
  • 6. Оформить заключение по полученным результатам с рекомендациями по оптимизации микроклимата помещений.

Часть теоретического и практического материала для подготовки к занятию

Наиболее благоприятной температурой воздуха в умеренном климате в жилых помещениях для человека, находящегося в покое и одетого в обычный домашний костюм, является 18-20Сє, при оптимальной влажности (40-60%) и подвижности (0,1 - 0,2 м/сек) воздуха. Температура воздуха выше 24-25Сє и ниже 14-15Сє считается неблагоприятной, способной нарушать тепловое равновесие организма и послужить причиной развития различных заболеваний. Однако при выполнении физической работы или при изменении влажности и подвижности воздуха уровни оптимальных температур будут иными. Так, при физической работе средней тяжести оптимальной температурой воздуха считается 16-18Сє.

При наличии в помещении источников тепловой радиации, а именно: установок или приборов, с поверхности которых возможно тепловое излучение, а также при наличии в помещениях большой площади остекления следует учитывать совместное воздействие на организм конвекционного и лучистого тепла. В этих условиях человек не только подвергается влиянию температуры воздуха, но и находится в зоне действия лучистого тепла от имеющихся в обследуемом помещении источников нагретых или охлажденных поверхностей (поверхность окон и др.), последнее наиболее выражение проявляется в помещениях современных конструкций при наличии ленточного остекления (остекление, состоящее из нескольких отдельных оконных блоков, выстроенных в горизонтальном направлении и соединенных между собой).

Особое значение имеет определение радиационной температуры при неравномерной тепловой нагрузке на человека в производственных условиях, а также при нерациональном размещении (в непосредственной близости к окнам, дверным проемам и др.) больных в лечебных учреждениях. В этих условиях определяют радиационную температуру, т.е. температуру, показывающую совместное действие всех видов радиационного воздействия.

В условиях нагревающего микроклимата в производственных помещениях определяется индекс тепловой нагрузки среды (ТНС-индекс). ТНС-индекс является показателем, характеризующим совместное действие на организм человека параметров микроклимата (температуры, влажности, подвижности воздуха и теплового излучения).

В лечебных учреждениях нормативы температуры воздуха, имеют два аспекта: первый предназначены для предотвращения неблагоприятного воздействия микроклимата рабочих мест, производственных помещений на самочувствие, функциональное состояние, работоспособность и здоровье человека табл. 1 и 2;

второй обосновываются производственным назначением помещений, контингентом госпитализированных больных и особенностями их заболеваний табл. 3.

Таблица 1

Параметры микроклимата в помещениях постоянного пребывания медицинского персонала

Таблица 2

Параметры микроклимата в помещениях временного пребывания медицинского персонала

Таблица 3. Расчетная температура воздуха и допустимые ее перепады по горизонтали и вертикали в отапливаемых помещениях

(СНиПы 2.08.01-89 и 2.08.02-89)

ПОМЕЩЕНИЯ

Температура, Сє

Колебания температуры, Сє

по горизонтали

по вертикали

Палаты для взрослых терапевтических больных, помещения для матерей детских отделений, помещения гипотерапии

Палаты для туберкулезных больных (взрослых, детей)

Палаты для больных гипотериозом

Послеродовые палаты, реанимационые залы, палаты интенсивной терапии, родовые, боксы, операционные, наркозные, палаты на 1-2 койки для ожоговых больных, барокамеры

Послеродовые палаты

Палаты для недоношенных, грудных, новорожденных и травмированных детей

Боксы, полубоксы, фильтр-боксы, предбоксы

Палатные секции инфекционного отделения

Предродовые, фильтры, приемно-смотровые боксы, перевязочные, манипуляционные, предоперационные процедурные, комнаты для кормления детей в возрасте до одного года, помещения для прививок

Стерилизационные при операционных

Измерение температуры воздуха, поверхностей оборудования, предметов в помещениях различного назначения производится термометрическими приборами.

КРАТКОЕ ОПИСАНИЕ УСТРОЙСТВА ПРИБОРОВ для измерения температуры воздуха

В зависимости от конструкции и устройства термометры подразделяются на спиртовые, ртутные, электрические и др. Кроме того, термометры подразделяются на бытовые, аспирационные, минимальные, максимальные. По своему назначению термометры подразделяются на пристенные, водяные, почвенные, химические, технические, медицинские и др.

Бытовой термометр - комнатный или уличный спиртовой термометр, достаточно точный для наблюдения за температурой воздуха.

Ртутные термометры - применяются для измерения температур от -35°С до +357оС. В пределах высоких температур показания ртутного термометра более точные вследствие постоянства коэффициента расширения ртути.

Минимальный термометр - спиртовой со штифтом или стеклянной иглой-указателем служит для регистрации самой низкой температуры за определенный промежуток времени. Спирт, образующий вогнутый мениск, при понижении температуры увлекает штифт или иглу-указатель по направлению к резервуару, а при повышении - обтекаемый спиртом указатель остается на месте. Температура отсчитывается по наиболее отдаленному от резервуара концу иглы указателя. Рабочее положение термометра - горизонтальное.

Максимальный термометр - ртутный. В дно резервуара для ртути впаян стеклянный стержень, который свободным концом входит в капилляр и уменьшает его просвет. При повышении температуры воздуха ртуть расширяется и по капилляру поднимается вверх. При понижении температуры воздуха сужение и стержень в капилляре задерживают возвращение ртути в резервуар. В медицинском термометре, который относится к числу максимальных термометров, на месте соединения капилляра и резервуара имеется сужение с перегибом, препятствующее при понижении температуры опусканию ртути в резервуар. Поэтому при пользовании максимальными термометрами их, перед началом измерения, нужно встряхнуть для возвращения ртути в резервуар.

Термограф - самопишущий прибор, применяется для систематических наблюдений за ходом температуры в течение продолжительного времени (суток или недели). Воспринимающей температуру частью служит биметаллическая пластинка или плоский металлический резервуар, заполненный толуолом. Изменение кривизны воспринимающей части, в соответствии с изменением температуры воздуха, посредством системы рычагов передается стрелке с пером, записывающим термограмму на движущейся специальной ленте, разграфленной по дням (если термограф недельный), часам и градусам температуры. Лента накладывается на цилиндр, который вращается часовым механизмом со скоростью одного оборота в сутки (суточный) или неделю (недельный).

Шаровой термометр используется для определения радиационной температуры и ТНС-индекса - совместного действия всех микроклиматических факторов. Прибор состоит из ртутного термометра, помещенного в полый медный шар, покрытый сажевой матовой краской или чернью Рубанса. Резервуар термометра также покрывается сажей и вставляется в центр медного шара. Медный шар должен быть диаметром 10-15 см. В простейшем случае шар может быть заменен стеклянной колбой, покрытой снаружи сажей. Для исключения конвенционного охлаждения отверстие шара и колбы следует герметично закрыть.

ПРАВИЛА ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА

Измерение температуры воздуха в закрытых помещениях, школах, квартирах, детских, лечебных учреждениях, производственных помещениях и др. проводится с соблюдением следующих правил: при измерении температуры воздуха необходимо защищать термометр от действия лучистой энергии печей, ламп и прочих открытых источников энергии. В жилых помещениях измерение температуры воздуха проводят на высоте дыхания (1,5 м от пола) в центре комнаты. Для более точных измерений одновременно термометры устанавливаются в центре комнаты, наружном и внутреннем углах на расстоянии 0,2м от стен.

В лечебных учреждениях измерение температуры воздуха дополнительно проводится и на высоте 70 см от пола. Перепады температуры определяются и оцениваются по вертикали и горизонтали. Для определения перепада температуры по вертикали, термометры устанавливаются в центре и по упомянутым углам помещения на высоте 0,1-0,15; 0,7 и 1,5 м от пола. Для определения перепада температуры по горизонтали вычисляется разница между максимальной и минимальной температурой отдельно по каждому уровню (0,1-0,15; 0,7 и 1,5 м) во всех измеренных участках помещения. Суточный перепад температуры в палатах измеряется с помощью максимального и минимального термометров, которые устанавливаются в центре помещения на уровне 0,7 и 1,5 м от пола.

Для измерения температуры стен (ограждающих поверхностей) на высоте 1,5 м от пола используется пристенный термометр, резервуар которого приклеивается к стене пластилином, или используют электротермометр. Показания температуры при измерениях снимаются через 5-10 минут от начала измерения.

МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА БАРОМЕТРИЧЕСКОГО ДАВЛЕНИЯ

Давление атмосферы, способное уравновесить столб ртути высотой 760 мм. при температуре 0о С на уровне моря и широте 45о, принято считать нормальным, равным 1 атмосфере, а в пересчете в гектопаскали оно будет составлять 1013 гПа.

Для пересчета величины давления, выраженной в мм.рт.ст., в гПа, надо данную величину умножить на 4/3 и наоборот, для перевода гПа в мм.рт.ст. надо умножить первую величину на 3/4.

ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ АТМОСФЕРНОГО ДАВЛЕНИЯ

Атмосферное давление измеряется приборами, называемыми барометрами. Они бывают двух типов: ртутные (чашечные и сифонные) и металлические. Наиболее точными считаются ртутные барометры. Металлические (анероиды) требуют периодической проверки по ртутному барометру.

Чашечный барометр состоит из вертикальной, наполненной ртутью трубки, верхний конец которой запаян, а нижний опущен в чашечку со ртутью. В верхней части трубки над ртутью имеется пустое безвоздушное пространство. При увеличении атмосферного давления воздух давит на поверхность ртути в чашке, и уровень ртути в трубке поднимается, при уменьшении давления происходит обратное - уровень ртути опускается. Ртутные барометры устанавливают в помещениях вдали от печей, дверей, окон, в местах, защищенных от солнца. Барометр должен быть укреплен на капитальной стене и не подвергаться сотрясениям.

Барометр-анероид состоит из безвоздушной металлической коробки с упругими волнообразными стенками. Колебания атмосферного давления отражаются на объеме коробки, стенки которой при увеличении давления прогибаются внутрь, а при уменьшении давления выпрямляются. Эти движения посредством пружины и системы рычажков передаются стрелке, движущейся по циферблату, на котором нанесены деления, соответствующие шкале ртутного барометра, обычно в пределах от 600 до 790 мм. Цифры шкалы обозначают сотни и десятки миллиметров рт.ст., единицы отсчитывают по промежуточным делениям шкалы. Перед отсчетом следует осторожно постучать по стеклу прибора, чтобы преодолеть трение меллических передаточных частей.

Для непрерывных наблюдений атмосферного давления пользуются самопишущим прибором - БАРОГРАФОМ, воспринимающую часть которого составляет ряд анероидных коробок, соединенных друг с другом. При изменении давления эти коробки перемещаются, что передается по системе рычажков стрелке с пером, укрепленной около ленты барабана, вращающегося со скоростью одного полного оборота в сутки или неделю. Все составные части прибора заключены в футляр, который открывается только при смене лент.

МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА ВЛАЖНОСТИ ВОЗДУХА

Влажность воздуха характеризуется следующими показателями:

Абсолютная влажность -- это упругость водяных паров, находящихся в воздухе в данное время при данной температуре, выражающаяся в единицах давления: миллиметры ртутного столба, или в граммах в 1 м3 воздуха.

Максимальная влажность -- это упругость водяных паров при полном насыщении воздуха влагой при данной температуре, выражается в мм рт. ст. или г/м3.

Относительная влажность -- это отношение абсолютной влажности к максимальной, выраженное в процентах (%), характеризует степень насыщения воздуха водяными парами в момент наблюдения.

В санитарной практике наибольшее значение имеет относительная влажность, которая нормируется.

Влажность воздуха, так же как и температура, сказывается на процессах теплообмена. Так, при чрезмерно сухом (относительная влажность менее 15 %), но теплом воздухе возникает ощущение сухости во рту, в носу, могут возникать трещины кожи, слизистых и, как следствие, присоединяться инфекции. Чрезмерно сухой и холодный воздух может вызвать значительное местное охлаждение слизистых оболочек дыхательных путей.

Высокая влажность воздуха в сочетании с высокой температурой неблагоприятно влияет на теплообмен. При температуре воздуха выше температуры тела отдача тепла может происходить только за счет испарения пота с поверхности кожи. Если же при этом воздух имеет повышенную влажность, этот процесс затрудняется и может наступить перегревание организма. Высокая влажность в сочетании с низкой температурой воздуха приводит к переохлаждению организма. Это объясняется тем, что теплоемкость водяных паров выше теплоемкости сухого воздуха, вследствие чего на нагревание холодного сырого воздуха расходуется больше тепла. Во влажном воздухе конденсируется влага на тканях одежды, что увеличивает их теплопроводность. Более того, постоянное испарение воды с поверхности одежды сопровождается уменьшением температуры воздуха под одеждой, что вызывает чувство зябкости. Таким образом, слишком сухой и чрезмерно влажный воздух, как при высокой, так и при низкой температуре, оказывает неблагоприятное влияние на организм человека. Норма относительной влажности составляет 30--60 %.

В городах повышенная влажность способствует образованию токсических туманов. Частицы дыма, являясь ядрами конденсации, образуют туманы, тем самым снижая напряжение ультрафиолетовой радиации. Высокая влажность воздуха способствует появлению сырости в помещениях, что отрицательно сказывается на хранении продуктов питания, сохранности самого помещения от развивающейся плесени.

ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ влажности воздуха

Для измерения влажности используется станционный психрометр АВГУСТА.

Он состоит из двух спиртовых термометров, укрепленных рядом в открытом футляре. Резервуар одного из термометров обернут тонкой тканью, конец которой опущен в трубку - сосуд с дистиллированной водой. С поверхности влажного термометра испаряется вода - тем сильнее, чем суше воздух, поэтому он показывает более низкую температуру, чем сухой термометр, и разница в показаниях термометров будет тем больше, чем суше воздух.

Психрометр устанавливают на высоте 1,5 м, ограждая от источников лучистой энергии и случайных движений воздуха. Продолжительность наблюдений 10-15 минут.

Относительная влажность определяется по табл. 4.

Аспирационный психрометр. Он также состоит из двух, но ртутных термометров, закрепленных в специальной оправе, имеющей заводной механизм с вентилятором, с помощью которого обеспечивается равномерное движение воздуха около резервуаров обоих термометров. Резервуары со ртутью окружены двойными металлическими гильзами, предохраняющими термометры от нагревания лучистым теплом и движения наружного воздуха. Эти условия дают возможность для более точного определения влажности воздуха, и поэтому величина "а" в формуле является постоянной.

Перед наблюдением ткань на одном из резервуаров термометра смачивается водой из пипетки. Набрав воду в резервуар, надевается зажим на каучуковую трубку. Затем, поставив прибор стеклянной трубкой кверху, слегка отжать зажим, надавить на грушу до заполнения стеклянной трубки, и зажим отпустить. Обернутый тканью резервуар термометра вставляют в трубку с водой. Когда ткань пропитается водой, зажим открывают и, благодаря расправлению стенок груши, вода в стеклянной трубке перельется обратно в грушу и вместе с тем будет отсосана излишняя вода с ткани на резервуаре термометра. Затем завести ключом пружину вентилятора, прибор установить в месте наблюдения (на штатив или крюк), через 3-4 мин. температура обоих термометров устанавливается и можно снять показания при работающем вентиляторе.

Определение относительной влажности производят по таблице 5 для аспирационного психрометра.

Гигрометр и гигрограф.

Для непосредственного определения относительной влажности применяются гигрометры (волосяные и пленочные), основанные на способности волоса или биологической пленки, вследствие гигроскопичности увеличиваться в размерах во влажной среде и уменьшаться в сухой. Для постоянной и систематической записи колебаний влажности воздуха в течение определенного промежутка времени (сутки, неделя), применяют самопишущие приборы - гигрографы, состоящие из:

  • а) датчика влажности - пучок обезжиренных человеческих волос;
  • б) передаточного механизма;
  • в) регистрируемой части - стрелка с пером и барабан с часовым механизмом. Диаграммная бумажная лента разделена горизонтальными параллельными линиями времени.

Перед установкой гигрографа в исследуемом месте надо укрепить на барабане диаграммную ленту, завести часовой механизм, надеть барабан на ось, заполнить перо чернилами, совместить стрелку с графой времени (день, неделя, час) и установить ее в соответствии с данными относительной влажности, вычисленными по психрометру (регулировочными винтами у датчика).

МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА ПОДВИЖНОСТИ ВОЗДУХА. РОЗА ВЕТРОВ

Движение воздуха принято характеризовать направлением и скоростью. Направление движения воздуха определяется точкой горизонта, откуда дует ветер, а скорость движения - расстоянием, пройденным массой воздуха в единицу времени и выражается в м/сек.

Оба эти показателя имеют большое физиолого-гигиеническое значение, т.к. изменение направления ветра служит показателем перемены погоды, а движение воздуха:

  • 1) обеспечивает проветривание населенных мест, способствует рассеиванию и снижению атмосферных загрязнений;
  • 2) является важнейшим показателем формирования микроклимата в открытой атмосфере и в помещениях;
  • 3) оказывает большое воздействие на состояние теплового ощущения, нервно-психической сферы организма, процессы терморегуляции и функции дыхания. Наиболее благоприятной скоростью ветра в наружной атмосфере в летнее время при обычной легкой одежде считается 1-4 м/сек. Раздражающее действие ветра проявляется при скорости выше 6-7 м/сек.

В жилых помещениях, классах, групповых комнатах, детских, лечебных учреждениях оптимальной считается подвижность воздуха в пределах 0,1-0,3 м/сек; при меньшей скорости имеет место недостаточный воздухообмен, а при движениях воздуха выше 0,4 м/сек отмечается неприятное ощущение сквозняка, В спортивных залах допускается скорость движения воздуха до 0,5-0,6 м/сек, а в горячих цехах - до 1 - 1,5 м/сек.

СПОСОБЫ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ ВОЗДУШНЫХ ТЕЧЕНИЙ

Направление ветра в открытой атмосфере измеряется с помощью специального прибора-флюгера и обозначается начальными буквами наименований сторон света: С-север, Ю-юг, В-восток, 3-запад. Кроме четырех главных румбов, используются промежеточные, находящиеся между ними, и в таких условиях направление ветра определяется восемью румбами.

Для большей точности угол между серединными румбами делят пополам и всего получается 16 румбов. В этих условиях направление определяется по главному и промежуточному румбу. Например, если ветер имеет направление между восточным и юго-восточным румбами, его обозначают ВЮВ, если между северным и северо-западным румбами, его обозначают ССЗ и т.д. Направление ветра можно определить также по отклонению листвы деревьев, дыма от костров, заводских труб.

В помещении направление движения воздуха можьо определить по отклонению пламени свечи, по отклонению листков папиросной бумаги, подвешенных на нитке; по дыму, исходящему от зажженнго кусочка ваты, пропитанного раствором четыреххлористого титана (TiCl4) и укрепленного на конце проволоки. В санитарно-гигиенической практике имеет значение не только одномоментное направление, как таковое. Велика роль господствующего направления ветра, которое устанавливается на основании обобщения многолетних метеорологических наблюдений повторяемости ветра по румбам, характерной для данной местности.

СОСТАВЛЕНИЕ "РОЗЫ ВЕТРОВ" и "РОЗЫ ВЛИЯНИЯ ВЕТРОВ"

"Роза ветров" - это графическое изображение повторяемости ветров по румбам (сторонам света), за определенный период (месяц, сезон, год) или за несколько лет.

Для составления "розы ветров" надо сложить число всех случаев ветра и штиля за известный срок, полученная сумма принимается за 100, а число случаев ветра по каждому румбу (и штиля) вычисляется в процентах по отношению к сумме всех случаев ветра и штиля, принятой за 100.

После этого строят график. Для этого из центра проводят 8 линий, обозначающих 8 румбов (С,В,СВ,В, ЮВ,Ю,ЮЗ,3,СЗ). Затем откладывают по всем линиям в одинаковом масштабе отрезки вычисленных процентных величин ветра всех 8 румбов и штиля, и соединяют последовательно вершины соседних между собой прямыми линиями. Из центра графика описывают окружность с радиусом, соответствующим процентному числу штиля.

Чтобы составить "розу влияния", откладывают по румбам не одну повторяемость ветров, а произведение числа ветров данного направления на среднюю скорость ветра того же направления, выраженных также в процентах по отношению к сумме произведений повторяемости на среднюю скорость ветра по всем румбам. "Роза ветров" и "Роза влияния" изображаются на одной диаграмме, причем, для из различия пользуются разного цвета карандашами или разной штриховкой.

ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ СКОРОСТИ ДВИЖЕНИЯ ВОЗДУХА

Скорость движения воздуха определяют с помощью анемометров (прямой способ) или кататермометров (косвенный способ).

Чашечный анемометр предназначен для измерения скорости ветра от 1 до 50 метров в секунду. Воспринимающей частью прибора служит чашечная мельница, полусферы которой обращены в одну сторону. Вращение полусфер передается счетчику оборотов, который являясь регистрирующей частью прибора, ведет отсчет на циферблатах расстояния, пройденного воздушными массами.

Прибор имеет несколько циферблатов, где фиксируются единицы, десятки, сотни и тысячи метров расстояния изучаемого ветра. Большая стрелка движется по циферблату, разделенному на 100 частей, а каждая маленькая стрелка - по циферблату, разделенному на 10 частей, и поэтому показывает величины в 10 раз большие, чем предшествующая стрелка. Например, переход первой маленькой стрелки на одно деление (100 м) равняется полному обороту большой стрелки; передвижение на одно деление 2-ой маленькой стрелки равняется полному обороту первой маденькой стрелки и т.д. Исходя из этого, при записи показаний циферблатов следует обращать особое внимание на показания стрелок по предыдущему циферблату. Например: стрелка на циферблате "тысячи" стоит против цифры 5, но записать эту цифру следует только в случае, если стрелка предыдущего циферблата "сотни" стоит на "О", если же она не дошла до "О", то с циферблата "тысячи" надо записать цифру "4", несмотря на то, что стрелка, как кажется, стоит на "5".

Перед началом измерений прибор на нуль не устанавливается, а записывается исходное положение стрелок на циферблатах, руководствуясь выше приведенными правилами записи их показаний.

Крыльчатый анемометр предназначен для измерения скорости движения воздуха в пределах от 0,5 до 10 метров в секунду. Воспринимающей частью прибора является колесико с легкими алюминевыми крыльями, огражденными металлическим кольцом. Регистрирующая часть аналогично чашечному анемометру представлена тремя циферблатами.

Рабочее положение перечисленных анемометров должно быть таким, чтобы лопасти мельницы всегда были перпендикулярными направлению воздушного потока. Измерение скорости движения воздуха чашечным и крыльчатым анемометрами проводят в течение 1-2 мин. после чего счетчик выключают и записывают показания. Разность конечного и начального показаний делят на количество секунд работы анемометра и умножают на поправку, указанную в паспорте прибора. С помощью графика определяют скорость воздушного потока в м/сек.

Электротермоанемометр ЭА-2М позволяет одновременно определить скорость движения воздуха в интервале от 0,03 до 5 м/сек и его температуру в пределах от 10 до 60 С. Принцип работы прибора основан на охлаждении движущимся воздухом полупроводникового микротермосопротивления. Состоит он из гальванометра; блока питания (прибор может работать от сети и автономно на батареях) с переключением питания; клеммы для включения в сеть; воспринимающей части - датчика (микротермосопротивление) с вилкой для подключения к прибору; переключателя для измерения температуры или скорости движения воздуха; переключателя "измерение-контроль"; регулятора напряжения и регулятора подогрева. Воспринимающая часть прибора - датчик в нерабочее время хранится в специальном защитном футляре. Перед измерением прибор устанавливают горизонтально, присоединяют к нему датчик и подключают прибор к сети (при необходимости работает автономно на батареях).

Для измерения скорости движения воздуха переключатель измерения ставят в соответствующее положение (а), другой переключатель - в положение "контроль" и вращением ручки регулировки напряжения устанавливают стрелку гальванометра на максимальное деление шкалы. Затем переключатель с положения "контроль" переводят в положение "измерение", производят отсчет показаний гальванометра и по графику определяют скорость движения воздуха.

гигиена воздух температурный режим

Определение скорости движения воздуха с помощью кататермометра

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ С КАТАТЕРМОМЕТРОМ Кататермометры бывают двух типов: кататермометр Хилла. имеющий цилиндрический резервуар и шаровой кататермометр. У кататермометра Хилла шкала термометра разделена на градусы от 35 до 38°, у шарового - от 33 до 40о.

32358 0

На протяжении жизни человек постоянно подвергается воздействию разнообразных, меняющихся по интенсивности и продолжительности экспозиции физических, химических, биологические и социальных факторов окружающей среды.

Гигиеническое нормирование — установление в законодательное порядке безвредных (безопасных) для человека уровней воздействия вредных факторов окружающей среды: предельно допустимых концентраций (ПДК) химических веществ, предельно допустимых уровней (ПДУ) воздействия физических факторов и др. Отсутствие гигиенического норматива, как правило, приводит к неконтролируемому; скрытому воздействию на человека потенциально вредных факторов.

В основе научной концепции гигиенического нормирования лежит всестороннее изучение общих закономерностей взаимоотношений организма человека и факторов окружающей среды различной природы, адаптационно-приспособительных процессов. При нормировании учитываются механизмы взаимодействия организма на различных уровнях (молекулярном, субклеточном, клеточном) органном, организменном, системном, популяционном) с комплексом благоприятных и неблагоприятных факторов антропогенного и естественного происхождения.

Несмотря на то что при гигиеническом нормировании химических веществ в некоторых средах (воде, почве) наряду с медико-биологическими показателями учитываются и экологические критерии, гигиенические ПДК не могут гарантировать отсутствия биоэкологических изменений (нарушения экосистем, влияния на популяции и виды различных биологических объектов). В связи с этим в последние годы во многих странах ведутся научные разработки в области экологического нормирования химических веществ.

В настоящее время наряду с гигиеническими ПДК в нашей стране существуют ПДК для водоемов рыбохозяйственного назначения. Нормируются химический состав ирригационных вод. содержание вредных веществ в кормах, устанавливаются ПДК химических соединений в сточных водах, подаваемые на сооружения биологической очистки. Разработаны ПДК химические соединений в воздухе, направленные на защиту древесных растений.

Принципы гигиенического нормирования

1. Принцип гарантийности. Гигиенические нормативы при условии их соблюдения должны гарантировать сохранение здоровья человека.

2. Принцип комплексности. Этот принцип предполагает учет всего комплекса возможных неблагоприятных эффектов исследуемого фактора.

3. Принцип дифференцированности. В зависимости от социальной ситуаций (мирного, военного времени) для одного и того же фактора могут устанавливаться несколько количественных значений или уровней.

4. Принцип социально-биологической сбалансированности. Гигиенический норматив вредного фактора должен регламентироваться с учетом пользы для здоровья при его соблюдении и вреда для здоровья, связанного с остаточным эффектом действия норматива и экономических затрат, с соблюдением этого норматива. Приоритет отдается указателям здоровья, а не экономическим выгодам.

5. Принцип динамичности. За установленными гигиеническими нормативами ведется наблюдение в динамике (в течение некоторого времени), периодически уточняются и, если необходимо, изменяются установленные пределы вредных факторов.

При соблюдении перечисленных принципов нормативы факторов не могут быть установлены в виде одной величины.

Параметры того или иного фактора могут иметь дифференцированные количественные выражения, или уровни, укладывающиеся в некую зону с максимальными и минимальными значениями.

Уровень I — оптимальный (уровень комфорта), гарантирующий при воздействии отрицательных факторов сохранение здоровья человека при неограниченном времени воздействия.

Уровень II — допустимый, гарантирующий сохранение здоровья, работоспособности человека при действии отрицательных факторов в течение определенного отрезка времени.

Уровень III — предельно допустимый, при котором допускаются некоторое снижение работоспособности и временное ухудшение самочувствия.

Уровень IV — максимальный} или предельно переносимый, допускающий стойкое снижение здоровья, работоспособности, выхода из строя до 10% личного состава. Это уровень аварийных ситуаций и военного времени.

Уровень V — выживания, рассчитан на применение в исключительных случаях военного времени.

Уровень VI — нормирования искусственно формируемых сред. Например, нормативы дыхательных кислородно-азотных или гелиево-кислородных смесей, заменяющих обычную атмосферу; нормативы для компенсирующих костюмов, комбинезонов для космонавтов; избыточного давления для дыхания летчика в случае разгерметизации кабины самолета,

Принципы гигиенического нормирования нашли отражение в oпределении одного из ведущих гигиенических нормативов — предельно допустимой концентрации (ПДК).

ПДК химического соединения в окружающей среде — концентрация веществ, при воздействии которых на организм человека, периодически или в течение всей жизни, не возникает соматически: или психических заболеваний, изменений в состоянии здоровья, вы ходящих за пределы приспособительных физиологических реакций обнаруживаемых современными методами сразу или в отдаленны сроки жизни настоящего и последующих поколений.

Наряду с ПДК введены временные ориентировочные безопасные уровни воздействия (ОБУВ) и ориентировочные допустимые уровни (ОДУ).

Обоснование временных нормативов проводится с использованием ускоренных экспериментальных и расчетных методов, а также по аналогии с ранее нормированными структурно близкими соединениями.

При гигиенической оценке новых материалов и изделий разработаны и утверждены допустимые уровни выделения вредных вещест из полимерных материалов в контактирующие с ними среды (вод; воздух, продукты питания), а также нормативы выделения опасны, химических веществ, образующихся в результате термодеструкции различных материалов.

Для неионизирующих излучений устанавливают предельно допустимый уровень (ПДУ) физического фактора в окружающей среде — величину некоего фактора, при воздействии которого на организм человека, периодически или в течение всей жизни, не возникает изменений в состоянии здоровья, выходящих за пределы приспособительных физиологических реакций, обнаруживаемых современными методами сразу или в отдаленные сроки жизни настоящего и последующих поколений.

Для ионизирующих излучений регламентированы пределы доз (для персонала и населения) — наибольшие значения индивидуальной эквивалентной дозы за год, которая при равномерном воздействии в течение жизни не вызывает у работающих и населения неблагоприятных изменений в состоянии здоровья, обнаруживаемых современными методами исследования.

Виды профилактики в практической деятельности медицинских работников

Выделяют несколько видов профилактики: первичную, вторичную и третичную. Первичная профилактика предполагает предотвращение возникновения заболеваний. Большинство гигиенических мероприятий, в том числе гигиеническое нормирование воздействия факторов окружающей среды, предусматривают либо полное устранение вредного фактора, либо снижение его воздействия до безопасного уровня.

Вторичная профилактика предусматривает раннюю диагностику заболеваний улиц, подвергшихся воздействию вредных факторов окружающей среды (раннее выявление препатологических состояний; тщательное медицинское обследование внешне здоровых людей, подвергаемых воздействию неблагоприятных факторов окружающей среды или имеющих повышенный риск развития тех или иных заболеваний; медикаментозное лечение и другие меры, направленные на предотвращение манифестации заболеваний).

Вторичная профилактика включает такие паллиативные мероприятия, как индивидуальное и групповое антидотное питание, направленное на повышение резистентности организма, применение средств индивидуальной защиты, обучение населения приемам безопасной работы и жизни в неблагоприятных экологических условиях.

Третичная профилактика направлена на предупреждение ухудшения здоровья. Разработан комплекс мер (лечение и реабилитация) но предотвращению осложнений, которые могут возникать в ходе уже развившегося заболевания. Это наименее эффективный, но, к сожалению, наиболее распространенный в традиционной практической клинической медицине способ профилактики.

В.И. Архангельский, В.Ф. Кириллов

Основные законы гигиены.

I ЗАКОН: фактора

2 ЗАКОН:

3 ЗАКОН:

4 ЗАКОН:

5 ЗАКОН:

6 ЗАКОН:

ЭПИДЕМИОЛОГИЧЕСКИЙ –

4. Натурный эксперимент

САНИТАРНОГО ОБСЛЕДОВАНИЯ:

Взаимосвязь и отличия гигиены и экологии

Общее этих наук - изучение влияния факторов среды на организмы! охрана окружающей среды (среды обитания) от деградации вследствие загрязнения. Изменения в экосистемах рано или поздно сказываются на условиях жизни или здоровье человека.

а) разные объекты исследования - человек (гигиена) или живые организмы (экология),

б) разные методы исследования этих наук в связи с разными объектами исследования.

в) отличия в принципах нормирования вредных факторов (в гигиене - сохранение здоровья каждого человека, в экологии - сохранение основных показателей экосистем с возможной гибелью части организмов).

Понятие об окружающей среде и биосфере.

ОКРУЖАЮЩАЯ СРЕДА: 1 . Атмосферный воздух (воздух в помещениях), 2 . Вода водоемов и

питьевая вода, 3 . Почва, 4 . Продукты питания

БИОСФЕРА:1. Тропосфера - приземный слой атмосферы 10-18км, 2. Гидросфера - до 11км, 3. Литосфера - до 12 км.

Классификация факторов среды обитания в гигиене и экологии

ГИГИЕНИЧЕСКАЯ: 1. Физические (шум, вибрация, ЭМП, радиация и др.), 2 .Химические (различные

вещества, пары, газы), 3 .Биологические (макро- и микроорганизмы, биоактивные вещества),

4 .Психогенные (психо- физиологические)

ЭКОЛОГИЧЕСКАЯ: 1 . Абиотические (неживой природы), 2 . Биотические (живой природы),

3 . Антропогенные (техногенные)

Основные критерии качества окружающей среды.

Аналитический мониторинг – следит за степенью ПДК вредных факторов в ОС, медико-гигиенический мон-г - за состоянием здоровья населения, экологический мониторинг - за изменениями в экосистемах.

Виды государственного санитарного надзора

-ПРЕДУПРЕДИТЕЛЬНЫЙ – до возможного воздействия вредных факторов на людей (гигиеническое нормирование, экспертиза проектов строительства объектов).

-ТЕКУЩИЙ – контроль при функционировании объекта (санитарное обследование магазина, кафе, завода, школы и др.)

Структура санитарно-эпидемиологической службы Украины

nГЛАВНЫЙ ГОСУДАРСТВЕННЫЙ САНИТАРНЫЙ ВРАЧ УКРАИНЫ –

1-й зам. Министра Здравоохранения Украины

nГлавные государственные санитарные врачи МО, МВД, СБУ, Погранвойск и др.

nГлавные государственные санитарные врачи АР Крым, областей, г. Киева и Севастополя

nГлавные государственные санитарные врачи городов и районов

Структура санитарно-эпидемиологической станции

СЭС проведит гос. сан. надзор Они делятся на Республиканские, областные, городские и районные. Дезинфекционные, противочумные станции, НИИ гигиенического профиля.

Структура СЭС

СЭС включает Организационно-методический отдел, Санитарно-гигиенический отдел (отделения гигиены питания, коммунальной гигиены гигиены труда, гигиены детей и подростков, санитарно-гигисническая лаборатория, токсикологическая группа), Эпидемиологический отдел

Понятие о гигиеническом нормативе вредного фактора в среде, разновидности.

Гигиенический норматив вредного фактора - такая концентрация, доза или уровень вредного фактора в объекте окружающей среды, которые: не вызывают патологических изменений в организме человека и последующих поколений в течение всего времени контакта с этим объектом.

Разновидности гигиенических нормативов:

ПДК (предельно допустимая концентрация) – для вредных веществ в воде, воздухе, почве, продуктах.

ПДД (предельно допустимая доза)– для ионизирующей радиации

ПДУ (предельно допустимый уровень) – для шума, вибрации, электромагнитных полей

МДУ (максимально-допустимый уровень) – для пестицидов в продуктах питания

ДОК (допустимые остаточные количества) – для пестицидов в почве и продуктах питания.

Предмет и задачи экологии.

ЭКОЛОГИЯ – изучает взаимосвязи живых существ в природе и влияние на них факторов среды обитания.

Она делится на: аутэкология – изучение экологических аспектов в отношении одного представителя живых орг-в вне соотношения с другими жив орган-ми, синэкология – изучает сообщества жив орган-в и закономерности их функционирования.

Классификация экологических факторов:

а) абиотические факторы (действие на организм факторов неживой

природы),

б) биотические факторы (взаимоотношения живых организмов, трофические цепи и др.),

в) антропогенные факторы (связаны с деятельностью человека и могут быть абиотическими или биотическими).

Понятие о трофических цепях.

Трофическая цепь - цепь последовательной передачи в биогеоценозе вещества от низкоорганизованных к высокоорганизованным уровням. Выделяют самопитающиеся организмы ПРОДУЦЕНТЫ и питающиеся другими организмами - ГЕТЕРОТРОФЫ.

Значение трофических цепей: в этих цепях могут накапливаться токсиканты до опасных для человека уровнях. Выпадение каких-то звеньев цепей под антропогенным влиянием приводит к исчезновению животных или рыб. что может ухудшить качество питания населения.

Экосистемы и биоценозы.

Экосистема – совокупность совместно обитающих видов живых орг-в и условий их существования. Показатели экосистем : качественные – видовое разнообразие экосистем, количественные – кол-во особей отдельного вида. Биогеоценоз – совокупность на определенной территории однородных экологических факторов и видов жив орган-в, состоит из: ЭКОТОП – совокупность абиотических факторов и БИОЦЕНОЗ – комплекс жив орган-в.

Понятия «здоровье населения».

Общепатологическое здоровье (философское понятие), Популяционное здоровье – статистическое понятие, Индивидуальное здоровье: теоретическое и фактическое.

Факторы влияющ на на сост здоровья : образ жизни и социально-экономические факторы, генетические факторы, загрязнение окружающей среды, медицинские факторы.

Правила выбора зон наблюдения.

Зона наблюдения – определенная территория, на которой изучается влияние экологической обстановки на здоровье населения.

Зоны набл-я должны быть одинаковыми по: по соц-экономич усл-ям и образу жизни, по поло-возрастному, профес-му составу, по кол-ву населения. Отличаться эти зоны должны только по уровням загрязнения окружающей среды по исследуемому вредному фактору или их комплекса.

Метод эффективных температур.

Микрокл-т оценивался по тепловому самочувствию человека в спец камере с такими параметрами: Е = 100%, V = 0 м/с, Т воздуха менялась. Зона комфорта по тепловому самочувствию = 17,2 - 21,7 ЭТ . Линия комфорта 18,1 - 18,9 ЭТ . Эффективные температуры определяются по номограммам с помощью показаний сухого и влажного термометров и скорости движения воздуха.

Метод эквивалентно-эффективных температур (ЭЭТ). Были дополнительно пристроены камеры, в которых менялась Е или V так, чтобы тепловое самочувствие человека соответствовало ЭТ в зоне комфорта. В результате созданы; таблицы для автоматического кондиционирования воздуха через ЭВМ.

Метод радиационно - эквивалентно-эффективных температур (РЭЭТ) - учитывалась и радиационная температура - но способ очень сложный и не получил распространения.

Применение методов комплексной оценки микроклимата: 1) При кондиционировании воздуха в замкнутых помещениях длительного пребывания - космические корабли, самолеты, подводные лодки.

2) В курортологии - для дозирования воздушных процедур. 3) Для улучшения гигиенических условий труда - горячие цеха - воздушное душирование и т.д.

Проявления ГМР.

1) Легкой степени - астено-вегетативный синдром (массовость и синхронность с биотропной погодой)

2) Средней степени - головные и сердечные боли, выраженные изменения пульса, АД, удушье.

3) Тяжелой степени - обострение и утяжеление хронических заболеваний - инсульты, инфаркты, обострения бронхиальной астмы - рост летальности больных.


Проблемы акклиматизации

При резкой смене климата (переезды) наблюд акклиматиз-я – сложный комплекс функционально-морфологических изменений в организме, направленный на приспособление к новым климатическим условиям. Выделяют 2 стадии:

а) частичная аккл-я или адаптация - первые часы - до 14 суток (у больных людей - до 30 и более дней).

б) полная аккл- я - после 14 суток – несколько месяцев, к условиям Крайнего Севера - до 1,5 года.

Проявления : снижается резистентность организма к неблагоприят факторам, рост заболеваемости, астеновегетативный синдром.

Профилактика: -избегать резких смен климата, особенно для больных, пожилых людей и детей; - повышение общей резистентности организма; - закаливание, рациональное питание.- щадящий режим климатических процедур на южных курортах.


Состав атмосферного воздуха.

Азот - 78,1% Кислород-21% СО2 - 0,03-0,04%

1 % - остальные газы (аргон, гелий, неон, криптон, ксенон, радон, водород, озон) и водяные пары.

Действие составных частей: Кислород необходим для протекания окислительных биохимических процессов в организме. При недостатке наблюдается гипоксия. Для человека важно его парциальное давление. Парциальное давление 02 снижается при циклонах, а также при подъеме на высоту.

Озон вызыв раздражение слизистых ВДП, отек легких, изм-я ЦНС, Усиливает образ-е свободных радикалов, нарушает окислительные процессы, высвобождает из тканей адреналин.

Азот при норм усл-х - инертный газ. При повыш давлении – наркот-е действие на ЦНС.

Может вызыв головокружение, эйфорию. Углек газ - физиол раздражитель дых центра. При повыш конц-х ацидоз, наруш-я ЦНС.


ПДК СО2 в воздухе помещений

В воздухе любых помещений ПДК СО2 - 0,1%. Обоснование : содержание СО 2 в воздухе - показатель чистоты воздуха и эффективности вентиляции - при росте СО2 более 0,1% нарастает концентрация токсических и микробных загрязнителей воздуха, которые могут оказать вредное действие на организм человека.


Пути самоочищения атмосферы

1. Разведение

2. Седиментация: Сухая и Влажная

3. Химические реакции под влиянием УФО, озона.

4. Бактерицидный эффект УФО, озона

5. Реакции нейтрализации кислотных и щелочных загрязнителей.

6. Адсорбция растениями при достаточном количестве лесов и парков

7. Усвоение и разрушение загрязнителей микрофлорой почвы и водоемов из приземных слоев атмосферы

Значение солнечной радиации.

Причины солнеч голодания:

- недостат пребыв на открыт воздухе : а) неправиль режим дня детей, б) погодный: условий + укутывание детей - малая поверхность открытой кожи, в) хронические заболевания и дефекты развития у детей,

- климатические условия - Крайний Север - полярная ночь, очень холодная погода.

- загрязнение атмосферы - освещенность сниж на 40-50%,

- профессиональные особ-ти - шахтеры, подводники и др.

Профилактика:

1) Больше преб на открыт воздухе

2) Правильная планировка жилых кварталов и зданий, соблюдение норм естественного освещения в помещениях. 3) Борьба с загрязнением атмосферы. 4) Спец фотарии с ртутно-кварциевыми лампами


Методы улучш кач воды.

Повышен кач воды осущ в двух основных напрвлен: 1.очистка воды от механ и микрскоп примесей, чем достиг органолепт св-ва воды и ее прозрач. 2. Обеззораж воды различ методами(хлорир, озонир, иммуниз, обработкой солями тяж метал,УФ)Методы очистки . Освобожд воды от мех примесей провод в неск этапов:отстаивания и фильтрации.Отсаиван происходит в отстойниках в который попадает из узкой входной трубы со скорост от 2-4 мм/сек, так создаются условия для осажд взвеси.Частицы осидают под действием собств тяжести.Фильтрация происход в медлен фильтрах(емкости с песком) со скоростью 10см вод столб/час.Т. о. Задерживают до 99% бактер.Контроль эфф Органолепт(вкус,запах, цвет),Прозрачность(20мг/дц3 )


Методы обезараж воды.

Осн методами явл хлорир, озонир, иммуниз, обработкой солями тяж метал,УФ,иодирован, радиация, УЗвук).Хлорирован предложен П.Карачаровым 1853. а уже с 1912 нашел шир примен во всем мире. Примен при заборах воды с поверх водоемах, исп газообраз хлор или хлор известь, кот созд антибактер усл. Озонирование более перспектив метод. Озон имеет выраж бактерицид Дей-е, быстрее хлора, одноврем достаточ обесцв ее, устран запахи и вкусы.Озон не токсич., не треб дорого оборуд и достат.(ой ебанет...). Тяж металлы (Ag) фиксир в мембран бактер, и блок обм процессы, Пдк (Ag) 0.05 мм/л), оказыв консервиющ дей-е, вода не теряет в теч многих месяц вкусовых и биохим св-в (эконом нецелесообраз), серебр вода не оказывает леч и профил дей-я, прим соед I2,H202,K2Mn04, прим в полевых усл и эксперем.УФ широко прим на многих водопров мира, влияет не только вегетатив формы, споры, яйца гельминт, прим УФ с длиной волны(200-295нм), преим скорость, быстрее чем хлорир.


Хлорир воды.Его виды.

Хлорирован предложен П.Карачаровым 1853. а уже с 1912 нашел шир примен во всем мире. Примен при заборах воды с поверх водоемах, исп газообраз хлор или хлор известь, кот созд антибактер усл.Молекула Cl2-гидролизуется с образ, Hocl+HCl, не стойкая HOCl, кот диссоциир H+Ocl,биолог Дей-е оказ HOCl и Н, кот входят в понят акт «хлор». Акт хлор проник в бакт клетки и инактивир ферменты, что приводит к гибели бакт. Необход усл: - вода должна быть очищ; - хорошее перемеш воды; - время экспозиц (лето 30мин), (зима 60мин); - внесение дост кол-ва хлора, оббезараж счит надежным, если остат хлор сост(0.3-0.5мм/л)Хлор потребность-1-3мм/л акт «хлора», более эффект метод двойное хлорир(1раз-передотстойниками,2-после),суперхлор отлич от обыч. Тем что хлор прим в дозах от 5-10мм/л, уровень ост хлора сост от 1-5 мм/л, нуждается в дехлорир гипосульфитом и сернист газом или сорбцией С акт.

Основные законы гигиены.

I ЗАКОН: нарушение здоровья людей. вызванное неблагоприятными факторами. 3-х условий: I) источник вредн фактора в объекте среды. 2) механизма (пути) воздействия или передачи этого фактора к организму человека. 3) наличия чувствительного (восприимчивого) к этому фактору организма человека.

2 ЗАКОН: закон отрицательного влияния деятельности людей на окружающующую среду.

3 ЗАКОН: закон отрицательного влияния на окружающую среду природных стихийных явлений (вулканы, землетрясения)

4 ЗАКОН: закон положительного влияния человека на окружающую среду. При целенаправленной природоохранной работе и достаточном ее финансировании удается в ряде случаев улучшить качество окружающей среды.

5 ЗАКОН: закон отрицательного действия загрязненной окружающей среды на здоровье населения. Около 70% всех болезней, 50% случаев смерти и 60% дефектов физического развития прямо или косвенно обусловлены загрязнением среды. Качество окружающей среды (степень ее загрязнения) на 20%, а но некоторым данным, на 40-60% влияет на уровень здоровья населения.

6 ЗАКОН: закон положительного влияния окружающей среды на здоровье населения. Природные факторы при отсутствии их загрязнения оказывают лечебно-оздоровительное влияние на человека (например, курорты, заповедники и т.д.).

Основные методы гигиенических исследований

ЭПИДЕМИОЛОГИЧЕСКИЙ –

изучение показателей здоровья населения здоровья населения:

1. Санитарно-статистические методы

2. Медицинское обследование популяции

3. Клиническое наблюдение групп людей

4. Натурный эксперимент

САНИТАРНОГО ОБСЛЕДОВАНИЯ:

Санитарное описание (в т.ч. санитарно-топографическое обследование)

Санитарное обследование с инструментально-лабораторными исследованиями

Общая гигиена: конспект лекций Юрий Юрьевич Елисеев

Гигиеническое нормирование

Гигиеническое нормирование

Что следует понимать под гигиеническим нормативом? Гигиенический норматив – строгий диапазон параметров факторов среды, оптимальный и безвредный для сохранения нормальной жизнедеятельности и здоровья человека, человеческой популяции и будущих поколений. Санитарные правила, нормы, гигиенические нормативы – это нормативные акты, устанавливающие критерии безопасности и безвредности для человека факторов среды его жизнедеятельности. Санитарные правила обязательны для соблюдения всеми государственными органами и общественными объединениями, предприятиями и иными хозяйственными субъектами, организациями, учреждениями независимо от их подчиненности и форм собственности, должностными лицами и гражданами.

Гигиенические нормативы для химических веществ устанавливаются в виде предельно допустимых концентраций (ПДК). Для физических факторов они устанавливаются в виде допустимых уровней воздействия (ПДУ).

Для химических веществ ПДК устанавливаются в атмосферном воздухе населенных мест в виде максимальных разовых и среднесуточных предельно допустимых концентраций. Устанавливаются ПДК вредных химических веществ в воде водоемов, питьевой воде. Устанавливаются ПДК для содержания вредных химических веществ в почве. В пищевых продуктах вредные химические вещества нормируются в виде допустимых остаточных количеств (ДОК). Для химических веществ предельно допустимые количества в воде устанавливаются в миллиграммах на 1 дм 3 , или 1 л, для воздуха – в миллиграммах на 1 м 3 воздуха, пищевых продуктов – в миллиграммах на 1 кг массы продукта. ПДК характеризуют безопасные уровни воздействия вредных химических веществ в тех или иных объектах окружающей среды.

Также устанавливаются ПДУ воздействия физических факторов. В частности, существует представление об оптимальных и допустимых параметрах микроклимата, т. е. температуры, влажности, скорости движения воздуха и т. д. Устанавливаются оптимальные допустимые количества питательных веществ, их нормирование происходит с учетом физиологических потребностей. Существуют так называемые физиологические нормы потребности в белках, жирах, углеводах, минеральных веществах, витаминах. При установлении ПДК вредных химических веществ в окружающей среде соблюдают определенные принципы гигиенического нормирования, которые включают:

1) принцип этапности;

2) принцип пороговости.

Этапность в нормировании состоит в том, что работа по нормированию проводится в строго определенной последовательности, связанной с выполнением соответствующего этапа исследований. Для химических веществ первым этапом данных исследований является аналитический этап. Аналитический этап включает в себя оценку физико-химических свойств: данные о структуре химического вещества, его параметрах – температуре плавления, точке кипения, растворимости в воде, других растворителях. Для проведения аналитических исследований необходимо наличие специфических методов определения. Вторым обязательным этапом гигиенических исследований при установлении ПДК является токсикометрия, т. е. определение основных параметров токсичности. Токсикометрия включает проведение исследований по определению параметров острой токсичности (острая токсикометрия или, проще, острые опыты). Далее следуют подострый эксперимент и хронический санитарно-токсикологический эксперимент.

Главной и основной задачей острого опыта является определение среднесмертельных концентраций и доз LD 50 или CL 50 . Постановка острых опытов позволяет оценить степень опасности химических веществ, характер направленности действия, уязвимость тех или иных систем и функций организма. Острые опыты позволяют наиболее обоснованно подойти к постановке подострого и хронического санитарно-токсикологического экспериментов. Этапность нормирования позволяет также в отдельных случаях сократить объемы проводимых исследований, используя так называемый принцип нормирования по аналогии, т. е. изучение показателей оцениваемого токсического вещества по физико-химическим свойствам позволяет выяснить наличие так называемых веществ-аналогов и осуществить нормирование, используя принцип аналогичности. Этот подход так и называется – нормирование по аналогии. Для веществ, обладающих сходными свойствами, т. е. нормирование которых проводится по аналогии, обязательным является установление параметров острой токсичности. Наличие параметров острой токсичности также позволяет сократить объем проводимых исследований и экономить значительное количество материальных средств, а также время, затраченное на проведение эксперимента.

Важным этапом токсикометрических исследований является проведение подострого санитарно-токсикологического эксперимента. Подострый эксперимент позволяет выявить наличие кумулятивных свойств с позиции качественной и количественной оценки этого этапа действия. В подостром опыте также выявляются наиболее уязвимые системы организма, что позволяет объективно подойти к постановке основного этапа токсикометрии, связанного с определением параметров токсичного в условиях хронического эксперимента. В подостром эксперименте испытывается большой набор токсикологических тестов, оценивающих воздействие химического вещества на сердечно-сосудистую систему, нервную систему, желудочно-кишечный тракт, выделительную системы и иные функции и системы организма.

Важнейшим принципом гигиенического нормирования является изучение порогового характера действия нормируемого фактора. По пороговому уровню воздействия в хроническом эксперименте определяется наименьшая концентрация, вызывающая сдвиги в организме лабораторного животного. По результатам хронического санитарно-токсикологического эксперимента для веществ, прежде всего обладающих выраженным токсическим действием, устанавливаются ПДК.

При нормировании вредных химических веществ в водной среде обязательными этапами исследования являются изучение влияния вещества на органолептические свойства воды и санитарный режим водоемов, т. е. для установления ПДК химических веществ в водоемах вводятся дополнительные этапы исследования. На всех этих этапах изучения воздействия вредных химических веществ обязательно устанавливаются пороговые уровни воздействия, пороговые дозы и концентрации. По пороговым концентрациям определяется лимитирующий признак вредности, т. е. устанавливается та наименьшая концентрация, в которой прежде всего проявляется действие вредного химического вещества либо на органолептические свойства воды, либо на санитарный режим водоема, либо при оценке токсических свойств. При установлении ПДК вредных химических веществ в воде водоемов выявляют лимитирующий признак либо органолептический, либо по санитарному режиму, либо токсикологический. По лимитирующему признаку вредности с учетом наименьшей пороговой концентрации устанавливается ПДК. Таким образом, определяющими принципами нормирования являются принципы пороговости и этапности.

Установленные принципы нормирования химических веществ и уровней воздействия физических факторов положены в основу действующего санитарного законодательства.

ПДК позволяют, с одной стороны, осуществлять контроль содержания вредных химических веществ в окружающей среде, с другой – создать так называемую систему контроля содержания вредных химических веществ, т. е. осуществлять их мониторинг в окружающей среде. ПДК также используются при проектировании промышленных предприятий, ПДК закладываются в проекты строительства промышленных и других предприятий.

Из книги Общая гигиена автора Юрий Юрьевич Елисеев

6. Гигиеническое нормирование (продолжение) Важным этапом токсикометрических исследований является проведение подострого санитарно-токсико-логического эксперимента. Подострый эксперимент позволяет выявить наличие кумулятивных свойств с позиции качественной и

Из книги Общая гигиена: конспект лекций автора Юрий Юрьевич Елисеев

9. Физиолого-гигиеническое значение воды Вода – важнейший фактор формирования внутренней среды организма и в то же время один из факторов внешней среды. Там, где нет воды, нет жизни. В воде происходят все процессы, характерные для живых организмов, населяющих нашу Землю.

Из книги автора

10. Физиолого-гигиеническое значение воды. Дегидратация Содержание воды в организме человека составляет 60 % массы его веса. Организм постоянно теряет ок-сидационную воду различными путями:1) с воздухом через легкие (1 м3 воздуха содержит в среднем 8–9 г воды);2) через почки

Из книги автора

27. Гигиеническое нормирование вредных веществ в атмосферном воздухе В настоящее время существует два подхода в методике санитарной охраны атмосферного воздуха.1. Совершенная технология производства. Это наиболее эффективный, но в то же время дорогостоящий

Из книги автора

Гигиеническое нормирование Что следует понимать под гигиеническим нормативом? Гигиенический норматив – строгий диапазон параметров факторов среды, оптимальный и безвредный для сохранения нормальной жизнедеятельности и здоровья человека, человеческой популяции и

Из книги автора

Физиолого-гигиеническое значение воды Вода – важнейший фактор формирования внутренней среды организма и в то же время один из факторов внешней среды. Там, где нет воды, нет жизни. В воде происходят все процессы, характерные для живых организмов, населяющих нашу Землю.

Из книги автора

ЛЕКЦИЯ № 4. Гигиеническое нормирование качества питьевой воды Требования к качеству питьевой воды централизованного хозяйственно-питьевого водоснабжения и обоснование нормативов качества питьевой воды В настоящее время на территории РФ требования к качеству воды

Из книги автора

Гигиеническое нормирование вредных веществ в атмосферном воздухе. Понятие о предельно допустимых концентрациях вредных веществ в атмосферном воздухе, их обоснование Развитие науки и техники и связанный с этим резкий подъем промышленного производства приводят, как мы

Из книги автора

Потребность и нормирование углеводов Потребность в углеводах определяется величиной энергетических затрат, т. е. характером труда, возрастом и т. д. Средняя потребность в углеводах для лиц, не занятых тяжелым физическим трудом, равна 400-500 г в сутки, в том числе крахмала –

Из книги автора

Гигиеническая характеристика шума, его нормирование и меры профилактики негативного влияния его на организм Шумом называется беспорядочное сочетание звуков различной высоты и громкости, вызывающее неприятное субъективное ощущение и объективные изменения органов и

Методы санитарно-гигиенического исследования

Санитарно – гигиеническое исследование - ϶ᴛᴏ совокупность методов, применяемых для изучения влияния внешней среды на организм человека. На базе разрабатываются научно обоснованные гигиенические нормативы. Санитарно – гигиеническому исследованию подлежат: воздух, вода, почва, жильё, общественные и производственные здания, условия труда и быта͵ детские учреждения, пища

Методы санитарно-гигиенических исследований:

Санитарно-описательный метод: наиболее простой и старый, дающий приближённое представление об изучаемом объекте

Органолептические методы основаны на: восприятии органов чувств и используются при определœении посторонних запахов в атмосферном воздухе, при оценке качества питьевой воды и пищевых продуктов

Физические методы применяют при: определœении некоторых физических показателœей объектов - температуры, влажности, движения, давления воздуха, ультрафиолетового излучения и ионизации воздуха, радиоактивности различных веществ, теплопроводности тканей одежды; используя при этом спектрографию, радиометрию, фотометрию и др.
Размещено на реф.рф
новейшие методы исследования.

С помощью физико - химических методов определяют: вязкость, электропроводность, точку плавления, кипения и другие показатели исследуемого объекта͵ применяя колориметрию, поляриметрию, хроматографию, электролиз.

Химические методы используют в основном для: количественного химического анализа атмосферного воздуха, воздуха производственных помещений, воды водоёмов, пищи и пищевых продуктов

Радиохимическими методами устанавливают: количественный состав радиоактивных веществ во внешней среде

Микроскопические методы применяют при исследовании: пищевых продуктов, аэрозолей, гидропланктона, при бактериологических исследованиях с использованием световой, ультра- и электронной микроскопии

Бактериологические методы используют при: санитарно – гигиенических исследованиях питьевой воды, пищевых продуктов, а также воздуха, почвы, сточных вод, одежды, оборудования на предприятиях пищевой промышленности, обществ, питания. Первостепенное внимание обращается на определœение общего числа микробов и на наличие санитарно-показательных микроорганизмов. Серологические методы применяют дополнительно к бактериологическим, используя реакции агглютинации, преципитации и РСК.

Биологические методы: пробные испытания на животных, проводят с целью определœения токсических веществ микробного и химического происхождения

Микологические методы служат для: определœения видового состава пищевых грибов, отличия ядовитых грибов от съедобных, обнаружения патогенных и токсических грибов в продуктах

Биохимические методы используют: в практике гигиенического нормирования пищевых продуктов и при оценке их качества и биологической полноценности

Гельминтологическими методами определяют: наличие гельминтов, их яиц и личинок в почве, воде, овощах, мясе и других объектах

Физиологические методы используют при: исследовании влияния факторов внешней среды на организм животных и человека. С их помощью устанавливают нормы предельно допустимых концентраций токсических веществ в воздухе, воде. Статистические методы служат для изучения заболеваемости и различных показателœей состояния здоровья населœения и животных.

Методы санитарно-гигиенического исследования - понятие и виды. Классификация и особенности категории "Методы санитарно-гигиенического исследования" 2017, 2018.